Inhibitory and Excitatory Brainstem Connections Involved in Sound Localization: How do they Develop?

  • Eckhard Friauf
  • Karl Kandler
  • Christian Lohmann
  • Martin Kungel


Interaural time differences and interaural intensity differences are the two major cues that enable vertebrates to localize the direction of a sound source. Small mammalian species with a correspondingly small head width (distance between the two pinna ca. 2-4 cm), such as most rodents, do not experience interaural time differences longer than 60-120 us and, therefore, they generally rely on interaural intensity differences (IID). High frequency hearing in the ultrasound range, which is common to these small animals, is advantageous to localize sound sources, because the wave lengths of ultrasounds are too short to bend around the head and because sound shadowing by the head becomes better with increasing sound frequency.


Sound Localization Glycine Receptor Interaural Time Difference Superior Olivary Complex Medial Superior Olive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altman, J. and Bayer, S.A. (1980) Development of the brain stem in the rat. III. Thymidine-radiographic study of the time of origin of neurons of the vestibular and auditory nuclei of the upper medulla. J. Comp. Neurol. 194, 877–904.PubMedCrossRefGoogle Scholar
  2. Aoki, E., Semba, R., Keino, H., Kato, K. and Kashiwamata, S. (1988) Glycine-like immunoreactivity in the rat auditory pathway. Brain. Res. 442, 63–71.PubMedCrossRefGoogle Scholar
  3. Aprison, M.H., Galvezruano, E., Robertson, D.H. and Lipkowitz, K.B. (1996) Glycine and GABA receptors: Molecular mechanisms controlling chloride ion flux. J. Neurosci. Res. 43, 372–381.PubMedCrossRefGoogle Scholar
  4. Backus, K.H. and Friauf, E. (1996) Effects of synchronous depolarization on glycine-induced currents in developing rat auditory brainstem neurons. Soc. Neurosci. Abstr. 256, 6.Google Scholar
  5. Barker, J.L., McBurncy, R.N. and MacDonald, R.L. (1982) Fluctuation analysis of neutral amino acid responses in cultured mouse spinal neurones. J. Physiol. (Lond). 322, 365–387.Google Scholar
  6. Batini, C., Palestini, M., Thomassct, M. and Vigot, R. (1993) Cytoplasmic calcium buffer, calbindin-D28k, is regulated by excitatory amino acids. Neuroreport 4, 927–930.PubMedCrossRefGoogle Scholar
  7. Ben-Ari, Y., Tseeb, V., Raggozzino, D., Khazipov, R. and Gaiarsa, J.L. (1994) y-Aminobutyric acid (GABA): a fast excitatory transmitter which may regulate the development of hippocampal neurones in early postnatal life. Prog. Brain. Res. 102, 261–273.PubMedCrossRefGoogle Scholar
  8. Blatchley, B.J., Cooper, W.A. and Coleman, J.R. (1987) Development of auditory brainstem response to tone pip stimuli in the rat. Dev. Brain. Res. 32, 75–84.CrossRefGoogle Scholar
  9. Bledsoe, S.C.J., Snead, C.R., Helfert, R.H., Prasad, V., Wenthold, R.J. and Altschuler, R.A. (1990) Immunocyto-chemical and lesion studies support the hypothesis that the projection from the medial nucleus of the trape-zoid body to the lateral superior olive is glycinergic. Brain. Res. 517, 189–194.PubMedCrossRefGoogle Scholar
  10. Boudreau, J.C. and Tsuchitani, C. (1968) Binaural interaction in the cat superior olive S segment. J. Neurophysiol. 31, 442–454.PubMedGoogle Scholar
  11. Brown, R.D. and Feldman, A.M. (1978) Pharmacology of hearing and ototoxicity. Annu. Rev. Pharmacol. Toxicol. 18, 233–252.PubMedCrossRefGoogle Scholar
  12. Caird, D. and Klinke, R. (1983) Processing of binaural stimuli by cat superior olivary complex neurons. Exp. Brain. Res. 52, 385–399.PubMedCrossRefGoogle Scholar
  13. Chard, P.S., Bleakman, D., Christakos, S., Fullmer, C.S. and Miller, R.J. (1993) Calcium buffering properties of calbindin-D28k and parvalbumin in rat sensory neurones. J. Physiol. (Lond). 472, 341–357.Google Scholar
  14. Cherubini, E., Rovira, C., Gaiarsa, J.L., Corradetti, R. and Ben-Ari, Y. (1990) GABA mediated excitation in imma-ture rat CA3 hippocampal neurons. Int. J. Dev. Neurosci. 8, 481–490.PubMedCrossRefGoogle Scholar
  15. Cherubini, E., Gaiarsa, J.L. and Ben-Ari, Y. (1991 ) GABA: an excitatory transmitter in early postnatal life. Trends. Neurosci. 14, 515–519.PubMedCrossRefGoogle Scholar
  16. Constantine-Paton, M., CIine, H.T. and Debski, E. (1990) Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. Annu. Rev. Neurosci. 13, 129–154.PubMedCrossRefGoogle Scholar
  17. Fox, K. and Zahs, K. (1994) Critical period control in sensory cortex. Curr. Opin. Neurobiol. 4, 112–119.PubMedCrossRefGoogle Scholar
  18. Friauf, E. (1993) Transient appearance of calbindin-D28k-positive neurons in the superior olivary complex of de-veloping rats. J. Comp. Neurol. 334, 59–74.PubMedCrossRefGoogle Scholar
  19. Friauf, E., Hammerschmidt, B., Kirsch, J. and Betz. H. (1994) Development of glycine receptor distribution in the rat auditory brainstem: transition from the ‘neonatal’ to the ‘adult’ isoform. Assoc. Res. Otolaryngol. Abstr. 17, 10.Google Scholar
  20. Friauf, E., Hammerschmidt, B. and Kirsch, J. (1997) Development of adult-type glycine receptors in the central auditory system of rats. J. Comp. Neurol. (in press).Google Scholar
  21. Friauf, E., Kandler, K. (1993) Cell birth, formation of efferent connections, and establishment of tonotopic order in the rat cochlear nucleus. In: MA. Merchán, J.M. Juiz, D.A. Godfrey and E. Mugnaini (Eds.), The Mammalian Cochlear Nuclei: Organization and Function, Plenum, New York, pp. 19–28.CrossRefGoogle Scholar
  22. Gao, B.X. and Ziskind-Conhaim, L. (1995) Development of glycine-and GABA-gated currents in rat spinal mo-toneurons. J. Neurophysiol. 74, 113–121.PubMedGoogle Scholar
  23. Goldberg, J.M. and Brown, P.B. (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: Some physiological mechanism of sound localization. J. Neurophysiol. 32, 613–636.PubMedGoogle Scholar
  24. Goodman, C.S. and Shatz, C.J. (1993) Developmental mechanisms that generate precise patterns of neuronal connectivity. Neuron 10, 77–98.Google Scholar
  25. Guian, J.J.J., Norris, B.E. and Guinan, S.S. (1972) Single auditory units in the superior olivary complex. 11: Locations of unit categories and tonotopic organization. Int. J. Neurosci. 4, 147–166.CrossRefGoogle Scholar
  26. Hebb, D.O. (1949) The Organization of Behavior. John Wiley and Sons; New York.Google Scholar
  27. Helfert, R.H., Juiz, J.M., Bledsoe, S.C., Bonneau, J.M., Wenthold, R.J. and Altschuler, R.A. (1992) Patterns of glutamate, glycine, and GABA immunolabeling in four synaptic terminal classes in the lateral superior olive of the guinea pig. J. Comp. Neurol. 323, 305–325.PubMedCrossRefGoogle Scholar
  28. Janigro, D. and Schwartzkroin, P.A. (1988) Effects of GABA and baclofen on pyramidal cells in the developing rabbit hippocampus: an ‘in vitro’ study. Dev. Brain. Res. 41, 171–184.CrossRefGoogle Scholar
  29. Kandler, K. and Friauf, E. (1993) Pre-and postnatal development of efferent connections of the cochlear nucleus in the rat. J. Comp. Neurol. 328, 161–184.PubMedCrossRefGoogle Scholar
  30. Kandler, K. and Friauf, E. (1995) Development of glycinergic and glutamatergic synaptic transmission in the auditory brainstem of perinatal rats. J. Neurosci. 15, 6890–6904.PubMedGoogle Scholar
  31. Kelly. J.B. (1992) Behavioral development of the auditory orientation response. In: R. Romand (Ed.), Development of Auditory and Vestibular Systems 2, Elsevier, Amsterdam, London, New York, Tokyo, pp. 391–418.Google Scholar
  32. Kungel, M. and Friauf, E. (1996) Patch-clamp studies of auditory brainstem neurons: Developmental changes in physiology and glycinergic pharmacology. 1. Kongress der Neurowiss. Gesellschaft, Berlin.Google Scholar
  33. Langosch, D., Becker, C.-M. and Betz, H. (1990) The inhibitory glycine receptor: A ligand-gated chloride channel of the central nervous system. Eur. J. Biochem. 194, 1–8.PubMedCrossRefGoogle Scholar
  34. Leinekugel, X., Tseeb, V., Ben-Ari, Y. and Bregestovski, P. (1995) Synaptic GABAA activation induces Ca2+ rise in pyramidal cells and interneurons from rat neonatal hippocampal slices. J. Physiol. (Lond). 487, 319–329.Google Scholar
  35. Lin. M.H., Takahashi, M.P., Takahashi, Y. and Tsumoto, T. (1994) Intracellular calcium increase induced by GABA in visual cortex of fetal and neonatal rats and its disappearance with development. Neurosci. Res. 20, 85–94.PubMedCrossRefGoogle Scholar
  36. Lohmann, C. and Friauf, E. (1996) Distribution of the calcium-binding proteins parvalbumin and calretinin in the auditory brainstem of adult and developing rats. J. Comp. Neurol. 367, 90–109.PubMedCrossRefGoogle Scholar
  37. Lohmann, C. and Friauf, E. (1997) An organotypic slice culture from a network of developing inhibitory and exci-tatory connections. Submitted.Google Scholar
  38. Loturco, J.J., Owens, D.F., Heath, M.J.S., Davis, M.B.E. and Kriegstein, A.R. (1995) GABA and glutamate depo-larize cortical progenitor cells and inhibit DNA synthesis. Neuron 15, 1287–1298.PubMedCrossRefGoogle Scholar
  39. Luhmann, H.J. and Prince, D.A. (1991) Postnatal maturation of the GABAergic system in rat neocortex. J. Neurophysiol. 65, 247–263.PubMedGoogle Scholar
  40. Lux, H.D. (1971) Ammonium and chloride extrusion: hyperpolarizing synaptic inhibition in spinal motoneurons. Science 173, 555–557.PubMedCrossRefGoogle Scholar
  41. Miller, M.W. and Nowakowski, R.S. (1988) Use of bromodeoxyuridine-immunohistochemistry to examine the proliferation, migration and time of origin of cells in the entrai nervous system. Brain. Res. 457, 44–52.PubMedCrossRefGoogle Scholar
  42. Misgeld, U., Deisz, R.A., Dodt, H.U. and Lux, H.D. (1986) The role of chloride transport in postsynaptic inhibition of hippocampal neurons. Science 232, 1413–1415.PubMedCrossRefGoogle Scholar
  43. Moore, D.R. (1992) Trophic influences of excitatory and inhibitory synapses on neurones in the auditory brain stem. Neuroreport 3, 269–272.PubMedCrossRefGoogle Scholar
  44. Mueller, A.L., Taube, J.S. and Schwartzkroin, P.A. (1984) Development of hyperpolarizing inhibitory postsynaptic potentials and hyperpolarizing response to t-aminobutyric acid in rabbit hippocampus studied in vitro. J. Neurosci. 4, 860–867.PubMedGoogle Scholar
  45. Nicoll, R.A. and Alger, B.E. (1980) Presynaptic inhibition: Transmitterand ionic mechanisms. Annu. Rev. Neurosci. 3, 227–268.PubMedCrossRefGoogle Scholar
  46. Nishi, S., Minota, S. and Karczmar, A.G. (1974) Primary afferent neurones: The ionic mechanism of GABA-medi-ated depolarization. Neuropharmacology 13, 215–219.PubMedCrossRefGoogle Scholar
  47. O’Leary. D.D.M., Ruff, N.L. and Dyck, R.H. (1994) Development, critical period plasticity, and adult reorganiza-tions of mammalian somatosensory systems. Curr. Opin. Neurobiol. 4, 535–544.PubMedCrossRefGoogle Scholar
  48. Obata, K., Oide, M. and Tanaka, H. (1978) Excitatory and inhibitory actions of GABAand glycine on embryonic chick spinal neurons in culture. Brain. Res. 144, 179–184.PubMedCrossRefGoogle Scholar
  49. Obrietan, K. and van den Pol, A.N. (1995) GABA neurotransmission in the hypothalamus: developmental reversal from Ca2+ elevating to depressing. J. Neurosci. 15, 5065–5077.PubMedGoogle Scholar
  50. Obrietan, K. and van den Pol, A.N. (1996) Growth cone calcium elevation by GABA. J. Comp. Neurol. 372, 167–175.PubMedCrossRefGoogle Scholar
  51. Owens, D.F., Boyce, L.H., Davis, M.B.E. and Kriegstein, A.R. (1996) Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. J. Neurosci. 16, 6414–6423.PubMedGoogle Scholar
  52. Puel, J.L. and Uziel, A. (1987) Correlative development of cochlear action potential sensitivity, latency, and frequency selectivity. Brain. Res. 465, 179–188.PubMedGoogle Scholar
  53. Reichling, D.B., Kyrozis, A., Wang, J. and Mac Dermott, A.B. (1994) Mechanisms of GABAand glycine depolari-zation-induced calcium transients in rat dorsal horn neurons. J. Physiol. (Lond). 476, 411–421.Google Scholar
  54. Rietzel, H.-J., Friauf, E. (1995) Development of dendritic morphology in the rat auditory brainstem: bipolar and multipolar cells in the lateral superior olive. In: N. Eisner, R. Menzel (Eds.), Proc.G#x00F6;ttingen Neuro-biol.Conf. Vol. 23, Thieme Verlag, StuttgartGoogle Scholar
  55. Sanes, D.H., Goldstein, N.A., Ostad, M. and Hillman, D.E. (1990) Dendritic morphology of central auditory neu-rons correlates with their tonotopic position. J. Comp. Neurol. 294, 443–454.PubMedCrossRefGoogle Scholar
  56. Sanes, D.H., Markowitz, S., Bernstein, J. and Wardlow, J. (1992) The influence of inhibitory affrents on the development of postsynaptic dendritic arbors. J. Comp. Neurol. 321, 637–644.PubMedCrossRefGoogle Scholar
  57. Sanes, D.H. and Chokshi, P. (1992) Glycinergic transmission influences the development of dendrite shape. Neuroreport 3, 323–326.PubMedCrossRefGoogle Scholar
  58. Sanes, D.H. and Takacs, C. (1993) Activity-dependent refinement of inhibitory connections. Eur. J. Neurosci. 5, 570–574.PubMedCrossRefGoogle Scholar
  59. Schmanns, H. and Friauf, E. (1994) K+-and transmitter-induced rises in [Ca2+], in auditory neurones of developing rats. Neuroreport 5, 2321–2324.PubMedCrossRefGoogle Scholar
  60. Schwartz, R.D. and Yu, X. (1995) Optical imaging of intracellular chloride in living brain slices. J. Neurosci. Methods 62, 185–192.PubMedCrossRefGoogle Scholar
  61. Sega, M. (1993) GABA induces a unique rise of [Ca]i in cultured rat hippocampal neurons. Hippocampus 3, 229–238.CrossRefGoogle Scholar
  62. Shatz, C.J. (1994) Role for spontaneous neural activity in the patterning of connections between retina and LGN during visual system development. Int. J. Dev. Neurosci. 12, 531–546.PubMedCrossRefGoogle Scholar
  63. Suneja, S.K., Benson, C.G., Gross, J. and Potashner, S.J. (1995) Evidence for glutamatergic projections from the cochlear nucleus to the superior olive and the ventral nucleus of the lateral lemniscus. J. Neurochem. 64, 161–171.PubMedCrossRefGoogle Scholar
  64. Thompson, S.M., Deisz, R.A. and Prince, D.A. (1988) Outward chloride/cation co-transport in mammalian cortical neurons. Neurosci. Lett. 89, 49–54.PubMedCrossRefGoogle Scholar
  65. Thompson, S.M., Deisz, R.A. and Prince, D.A. (1989) Relative contributions of passive equilibrium and active transport to the distribution of chloride in mammalian cortical neurons. J. Neurophysiol. 60, 105–124.Google Scholar
  66. Tsuchitani, C. (1977) Functional organization of lateral cell groups of cat superior olivary complex. J. Neurophysiol. 40, 296–318.PubMedGoogle Scholar
  67. Uziel, A., Romand, R. and Marot, M. (1981) Development of cochlear potentials in rats. Audiology 20, 89–100.PubMedCrossRefGoogle Scholar
  68. Wang, J., Reichling, D.B., Kyrozis, A. and Mac Dermott, A.B. (1994) Developmental loss of GABA-and glycine-induced depolarization and Ca2+ transients in embryonic rat dorsal horn neurons in culture. Eur. J. Neuro-sci. 6, 1275–1280.CrossRefGoogle Scholar
  69. Weber, F., Zulus, H., Friauf, E. (1991) Neuronal birth in the rat auditory brainstem. In: N. Eisner, W. Singer (Eds.), Synapse, Transmission, Modulation. Proceedings of the 19th G#x00F6;ttingen Neurobiology Conference, Georg Thieme Verlag, Stuttgart, New York, pp. 123Google Scholar
  70. Wu, S.H. and Kelly, J.B. (1992) Synaptic pharmacology of the superior olivary complex studied in mouse brain slice. J. Neurosci. 12, 3084–3097.PubMedGoogle Scholar
  71. Wu, W.I., Ziskind-Conhaim, L. and Sweet, M.A. (1992) Early development of glycine-and GABA-mediated synapses in rat spinal cord. J. Neurosci. 12, 3935–3945.PubMedGoogle Scholar
  72. Yuste, R. and Katz. L.C. (1991) Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters. Neuron 6, 333–344.PubMedCrossRefGoogle Scholar
  73. Zhang, L., Spigelman, I. and Carlen, P.L. (1991) Development of GABA-mediated, chloride-dependent inhibition of CAI pyramidal neurones of immature rat hippocampal slices. J. Physiol. (Lond). 444, 25–49.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Eckhard Friauf
    • 1
  • Karl Kandler
    • 1
  • Christian Lohmann
    • 1
  • Martin Kungel
    • 1
  1. 1.Zentrum der PhysiologieKlinikum der Universität FrankfurtFrankfurtGermany

Personalised recommendations