Skip to main content

Synaptic Relationships in the Granule-Cell Associated Systems in Dorsal Cochlear Nucleus

  • Chapter
Acoustical Signal Processing in the Central Auditory System

Abstract

The dorsal cochlear nucleus (DCN) is the most complex part of the cochlear nucleus, from the standpoint of interneuronal circuitry (Lorente de Nó, 1981; Osen et al., 1990). Figure 1 shows a summary of part of the DCN’s circuitry. The principal cells of the nucleus are the pyramidal and giant cells, which project their axons to the contralateral inferior colliculus (Adams, 1979; Osen, 1972). The DCN is layered, with three layers running parallel to its free surface; the pyramidal cell somata form the second layer; these cells are bipolar, as indicated schematically in the figure, with apical dendrites in the superficial layer and basal dendrites in the deep layer (Blackstad et al., 1984; Kane, 1974; Smith and Rhode, 1985). The apical and basal dendrites of pyramidal cells encounter two different afferent systems. In the deep layer, there are primarily auditory affrents, including auditory nerve fibers (not shown; Osen, 1970) and collaterals of multipolar cells from PVCN (Oertel et al., 1990; Smith and Rhode, 1989). In addition to pyramidal basal dendrites, these afferent systems contact the other DCN principal cell type, giant cells, as well as vertical cells, which are an inhibitory interneuron (Saint Marie et al, 1991; Wenthold et al., 1987; Wickesberg and Oertel, 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J.C. (1979) Ascending projections to the inferior colliculus. J. Comp. Neurol. 183, 519–538.

    Article  PubMed  CAS  Google Scholar 

  • Berrebi, A.S. and Mugnaini, E. (1991) Distribution and targets of the cartwheel cell axon in the dorsal cochlear nucleus of the guinea pig. Anat. Embryol. 183, 427–454.

    Article  PubMed  CAS  Google Scholar 

  • Blackstad, T.W., Osen. K.K., and Mugnaini. E. (1984) Pyramidal neurones of the dorsal cochlear nucleus: AGolgi and computer reconstruction study in cat. Neuroscience 13, 827–854.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M.C. and Ledwith, J.V. (1990) Projections of thin (type-II) and thick (type-1) auditory-nerve fibers into the cochlear nucleus of the mouse. Hearing Res. 49, 105–118.

    Article  CAS  Google Scholar 

  • Davis, K.A., Miller, R.L., and Young, E.D. (1996a) Effects of somatosensory and parallel-fiber stimulation on neurons in dorsal cochlear nucleus. J. Neurophysiol. 76, 3012–3024.

    PubMed  CAS  Google Scholar 

  • Davis, K.A., Miller, R.L., and Young, E.D. (1996b) Presumed cartwheel cells in the cat dorsal cochlear nucleus (DCN) are excited by somatosensory and parallel fiber stimulation. Abst. Assoc. for Res. in Otolaryngol. 19, 171.

    Google Scholar 

  • Golding, N.L. and Oertel, D. (1995) Evidence that cartwheel cells of the dorsal cochlear nucleus excite other cartwheel cells and inhibit principal cells with the same neurotransmitter, glycine. Abst. Soc. for Neurosci. 21, 399.

    Google Scholar 

  • Itoh, K. et al. (1987) Direct projection from the dorsal column nuclei and the spinal trigeminal nuclei to the co chlear nuclei in the cat. Brain Res. 400, 145–150.

    Article  PubMed  CAS  Google Scholar 

  • Kane, E.C. (1974) Synaptic organization in the dorsal cochlear nucleus of the cat: a light and electron microscopic study. J. Comp. Neurol. 155, 301–329.

    Article  PubMed  CAS  Google Scholar 

  • Kane, E.S., Puglisi, S.G., and Gordon, B.S. (1981) Neuronal types in the deep dorsal cochlear nucleus of the cat: I. Giant neurons. J. Comp. Neurol. 198, 483–513.

    Article  PubMed  CAS  Google Scholar 

  • Kanold, P.O. and Young, E.D. (1996) Deep somatosensory receptors associated with the pinna provide static inhibition of principal neurons in the cat dorsal cochlear nucleus (DCN). Abst. Assoc. for Res. in Otolaryngol. 19, 170.

    Google Scholar 

  • Klee, M. and Rail, W. (1977) Computed potentials of cortically arranged populations of neurons. J. Neurophysiol. 40, 647–666.

    PubMed  CAS  Google Scholar 

  • Liberman, M.C. (1993) Central projections of auditory nerve fibers of differing spontaneous rate, 11: Posteroventral and dorsal cochlear nuclei. J. Comp. Neurol. 327, 17–36.

    Article  PubMed  CAS  Google Scholar 

  • Lorente de Nó, R. (1981 ) The Primary Acoustic Nuclei. Raven Press, New York.

    Google Scholar 

  • Manis, P.B. (1989) Responses to parallel fiber stimulation in the guinea pig dorsal cochlear nucleus in vitro. J. Neurophysiol. 61, 149–161.

    PubMed  CAS  Google Scholar 

  • Manis, P.B., Spirou, G.A., Wright, D.D., Paydar, S., and Ryugo, D.K. (1994) Physiology and morphology of complex spiking neurons in the guinea pig dorsal cochlear nucleus. J. Comp. Neurol. 348, 261–276.

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini, E., Osen, K.K., Dahl, A.L., Friedrich Jr., V.L., and Krte, G. (1980b) Fine structure of granule cells and related interneurons (termed Golgi cells) in the cochlear nuclear complex of cat, rat, and mouse. J. Neurocytol. 9, 537–570.

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini, E., Warr, W.B., and Osen, K.K. (1980a) Distribution and light microscopic features of granule cells in the cochlear nuclei of cat, rat, and mouse. J. Comp. Neurol. 191, 581–606.

    Article  PubMed  CAS  Google Scholar 

  • Oertel, D., Wu. S.H., Garb, M.W., and Dizack, C. (1990) Morphology and physiology of cells in slice preparations of the posteroventral cochlear nucleus of mice. J. Comp. Neurol. 295, 136–154.

    Article  PubMed  CAS  Google Scholar 

  • Osen, K.K. (1970) Course and termination of the primary affrents in the cochlear nuclei of the cat. Arch. Ital. Biol. 108, 21–51.

    PubMed  CAS  Google Scholar 

  • Osen, K.K. (1972) Projection of the cochlear nuclei on the inferior colliculus in the cat. J. Comp. Neurol. 144, 355–372.

    Article  PubMed  CAS  Google Scholar 

  • Osen, K.K., Ottersen, O.P., and Storm-Mathisen, J. (1990) Colocalization of glycine-like and GABA-like immunoreactivities. A semiquantitative study of individual neurons in the dorsal cochlear nucleus of cat. In: O.P. Ottersen and J. Storm-Mathisen (Eds.), Glycine Neurotransmission, John Wiley & Sons, New York, pp. 417–451.

    Google Scholar 

  • Ryugo. D.K. and Willard. F.H. (1985) The dorsal cochlear nucleus of the mouse: A light microscopic analysis of neurons that project to the inferior colliculus. J. Comp. Neurol. 242, 381–396.

    Article  PubMed  CAS  Google Scholar 

  • Saint Marie, R.L., Benson, CG.. Ostapoff, E.M., and Morest, D.K. (1991) Glycine immunoreactive projections from the dorsal to the anteroventral cochlear nucleus. Hearing Res. 51, 11–28.

    Article  CAS  Google Scholar 

  • Smith, P.H. and Rhode, W.S. (1985) Electron microscopic features of physiologically characterized, HRP-labeled fusiform cells in the cat dorsal cochlear nucleus. J. Comp. Neurol. 237, 127–143.

    Article  PubMed  CAS  Google Scholar 

  • Smith, P.H. and Rhode. W.S. (1989) Structural and functional properties distinguish two types of multipolar cells in the ventral cochlear nucleus. J. Comp. Neurol. 282, 595–616.

    Article  PubMed  CAS  Google Scholar 

  • Waller. HJ., Godfrey, D.A., and Chen, K. (1996) Effects of parallel fiber stimulation on neurons of rat dorsal co-chlear nucleus. Hearing Res. 98, 169–179.

    Article  CAS  Google Scholar 

  • Weedman, D.L., Pongstaporn, T., and Ryugo, D.K. (1996) Ultrastructural study of the granule cell domain of the cochlear nucleus in rats: Mossy fiber endings and their targets. J. Comp. Neurol. 369, 345–360.

    Article  PubMed  CAS  Google Scholar 

  • Wenthold, R.J., Huie, D., Altschuler, R.A., and Reeks, K.A. (1987) Glycine immunoreactivity localized in the co-chlear nucleus and superior olivary complex. Neuroscience 22, 897–912.

    Article  PubMed  CAS  Google Scholar 

  • Wickesberg, R.E. and Oertel, D. (1990) Delayed, frequency-specific inhibition in the cochlear nuclei of mice: a mechanism for monaural echo suppression. J. Neurosci. 10, 1762–1768.

    PubMed  CAS  Google Scholar 

  • Wouterlood, F.G. and Mugnaini, E. (1984) Cartwheel neurons of the dorsal cochlear nucleus. A Golgi-electron microscopic study in the rat. J. Comp. Neurol. 227, 136–157.

    Article  PubMed  CAS  Google Scholar 

  • Wouterlood, F.G., Mugnaini, E., Osen, K.K.,and Dahl, A.-L. (1984) Stellate neurons in rat dorsal cochlear nucleus studied with combined Golgi impregnation and electron microscopy: synaptic connections and mutual coupling by gap junctions. J. Neurocytol. 13, 639–664.

    Article  PubMed  CAS  Google Scholar 

  • Wright, D.D. and Ryugo, D.K. (1996) Mossy fiber projections form the cunate nucleus to the dorsal cochlear nucleus of rat. J. Comp. Neurol. 365, 159–172.

    Article  PubMed  CAS  Google Scholar 

  • Young, E.D. (1980) Identification of response properties of ascending axons from dorsal cochlear nucleus. Brain Res. 200, 23–38.

    Article  PubMed  CAS  Google Scholar 

  • Young, E.D., Nelken, I., and Conley, R.A. (1995) Somatosensory effects on neurons in dorsal cochlear nucleus. J. Neurophysiol. 73, 743–765.

    PubMed  CAS  Google Scholar 

  • Young, E.D., Rice, J.J., and Tong, S.C. (1996) Effects of pinna position on head-related transfer functions in the cat. J. Acoust. Soc. Am. 99, 3064–3076.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S. and Oertel, D. (1993a) Cartwheel and superficial stellate cells of the dorsal cochlear nucleus of mice: Intracellular recordings in slices. J. Neurophysiol. 69, 1384–1397.

    PubMed  CAS  Google Scholar 

  • Zhang, S. and Oertel, D. (1993b) Giant cells of the dorsal cochlear nucleus of mice: Intracellular recordings in slices. J. Neurophysiol. 69, 1398–1408.

    PubMed  CAS  Google Scholar 

  • Zhang, S. and Oertel, D. (1994) Neuronal circuits associated with the output of the dorsal cochlear nucleus through fusiform cells. J. Neurophysiol. 71, 914–930.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Young, E.D., Davis, K.A., Nelken, I. (1997). Synaptic Relationships in the Granule-Cell Associated Systems in Dorsal Cochlear Nucleus. In: Syka, J. (eds) Acoustical Signal Processing in the Central Auditory System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8712-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8712-9_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4673-9

  • Online ISBN: 978-1-4419-8712-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics