Skip to main content

Abstract

The dorsal cochlear nucleus (DCN) has become more intriguing as more is learned about it because, although its anatomical structure has been examined from many perspectives and the responses of individual cells have been studied for more than 25 years, it is not yet possible to identify a physiological function that is carried out by the DCN. In this paper we will examine what is known about the cells of the DCN and their roles in the circuit in a search for clues concerning their function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J. C. (1979) Ascending projections to the inferior colliculus. J. Comp. Neurol. 183, 519–538.

    Article  PubMed  CAS  Google Scholar 

  • Adams, J. C. and Mugnaini, E. (1987) Patterns of glutamate decarboxylase immunostaining in the feline cochlear nuclear complex studied with silver enhancement and electron microscopy. J. Comp. Neurol. 262. 375–401.

    Article  PubMed  CAS  Google Scholar 

  • Bell, C.C., Caputi, A., Grant, K., and Serrier, J. (1993) Storage of a sensory pattern by anti-Hebbian synaptic plas-ticity in electric fish. Proc. Nati. Acad. Sci. 90, 4650–4654.

    Article  CAS  Google Scholar 

  • Berglund, A. M. and Brown, M. C. (1994) Central trajectories of type II spiral ganglion cells from various co-chlear regions in mice. Hear. Res. 75, 121–130.

    Article  PubMed  CAS  Google Scholar 

  • Berrebi, A. S., Morgan, J. I., and Mugnaini, E. (1990) The Purkinje cell class may extend beyond the cerebellum. J. Neurocytol. 19, 643–654.

    Article  PubMed  CAS  Google Scholar 

  • Berrebi, A. S. and Mugnaini, E. (1991) Distribution and targets of the cartwheel cell axon in the dorsal cochlear nucleus of the guinea pig. Anatomy & Embryology 183, 427–454.

    CAS  Google Scholar 

  • Brown, M. C. and Ledwith, J. V. (1990) Projections of thin (type-II) and thick (type-I) auditory-nerve fibers into the cochlear nucleus of the mouse. Hear. Res. 49, 105–118.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M. C, Berglund, A. M., Kiang, N. Y. S., and Ryugo, D. K. (1988) Central trajectories of type II spiral gan-glion neurons. J. Comp. Neurol. 278, 581–590.

    Article  PubMed  CAS  Google Scholar 

  • Burian, M. and Gestoettner, W. (1988) Projection of primary vestibular afferent fibres to the cochlear nucleus in the guinea pig. Neurosci. Lett. 84, 13–17.

    Article  PubMed  CAS  Google Scholar 

  • Caicedo, A. and Herbert, H. (1993) Topography of descending projections from the inferior colliculus to auditory brainstem nuclei in the rat. J. Comp. Neurol. 328, 377–392.

    Article  PubMed  CAS  Google Scholar 

  • Cant, N.B. and Casseday, J.H. (1986) Projections from the anteroventral cochlear nucleus to the lateral and medial superior olivary nuclei. J. Comp. Neurol. 247, 457–476.

    Article  PubMed  CAS  Google Scholar 

  • Evans, E. F. and Nelson, P. G. (1973) The responses of single neurones in the cochlear nucleus of the cat as a function of their location and the anaesthetic state. Exp. Brain Res. 17, 402–427.

    PubMed  CAS  Google Scholar 

  • Feliciano, M., Saldaña, E., and Mugnaini, E. (1993) Direct projection from the primary auditory cortex to the nucleus sagulum, superior olivary complex and cochlear nucleus of the albino rat. Soc. Neurosci. Abstr. 19, 1427.

    Google Scholar 

  • Golding, N. L., and Oertel, D. (1996) Context-dependent action of glycinergic and GABAergic inputs in the dorsal cochlear nucleus. J. Neurosci. 16, 2208–2219.

    PubMed  CAS  Google Scholar 

  • Golding, N.L. and D. Oertel (1997) Physiological identification of the targets of cartwheel cells in the dorsal cochlear nucleus. J. Neurophysiol. (In press).

    Google Scholar 

  • Hirsch, J.A. and D. Oertel. (1988a) Intrinsic properties of neurones in the dorsal cochlear nuclei of mice, in vitro. J. Physiol. (London) 396, 535–548.

    CAS  Google Scholar 

  • Hirsch, J.A. and D. Oertel. (1988b) Synaptic connextions in the dorsal cochlear nucleus of mice, in vitro. J. Physiol. (London) 396, 549–562.

    CAS  Google Scholar 

  • Ito, M. Sakurai, M. Tongroach, P. (1982) Long-lasting depression of parallel flber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. J. Physiol. (London) 324, 113–134.

    CAS  Google Scholar 

  • Itoh, K., Kamiya, H., Mitani, A., Yasui, Y., Takada, M., and Mizuno, N. (1987) Direct projections from the dorsal column nuclei and the spinal trigeminal nuclei to the cochlear nuclei in the cat. Brain Res. 400, 145–150.

    Article  PubMed  CAS  Google Scholar 

  • Kane, E. C. (1974) Synaptic organization in the dorsal cochlear nucleus of the cat: A light and electron microscopic study. J. Comp. Neurol. 155, 301–330.

    Article  PubMed  CAS  Google Scholar 

  • Kolston, J., Osen, K.K., Hackney, C.M., Ottersen, O.P., Storm-Mathisen, J. (1992) An atlas of glycine-and GABA-like immunoreactivity and colocalization in the cochlear nuclear complex of the guinea pig. Anat. Embryol. 186, 443–465.

    Article  PubMed  CAS  Google Scholar 

  • Linden, D.J., Dickinson, M.H., Smeyne, M., Connor, J.A. (1991) A long-term depression of AMPA currents in cultured cerebellar Purkinje neurons. Neuron 7, 81–89.

    Article  PubMed  CAS  Google Scholar 

  • Llinás, R. and Sugimori, M. (1980) Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J. Physiol. Lond. 305, 171–195.

    PubMed  Google Scholar 

  • Manis. P. B. (1989) Responses to parallel fiber stimulation in the guinea pig dorsal cochlear nucleus in vitro. J. Neurophysiol. 61. 149–161.

    PubMed  CAS  Google Scholar 

  • Manis. P.B.. Scott, J.C., and Spirou, G.A. (1993) Physiology of the dorsal cochlear nucleus molecular layer. In: The Mammalian Cochlear Nuclei: Organization and Function, edited by M. A. Merchan, J. M. Juiz and D. A. Godfrey. New York: Plenum Publishing Corp., p. 361–371.

    Google Scholar 

  • Manis, P. B., Spirou, G. A., Wright, D. D., Paydar, S., and Ryugo, D. K.. (1994) Physiology and morphology of complex spiking neurons in the guinea pig dorsal cochlear nucleus. J. Comp. Neurol. 348, 261–276.

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini, E. (1985) GABA neurons in the superficial layers of the rat dorsal cochlear nucleus: light and electron microscopic immunocytochemistry. J. Comp. Neurol. 235, 61–81.

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini, E. and Floris, A. (1994) The unipolar brush cell: a neglected neurons of the mammalian cerebellar cortex. J. Comp. Neurol. 339, 174–180.

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini, E., Floris, A., and Wright-Goss, M. (1994) Extraordinary synapses of the unipolar brush cell: An electron microscopic study in the rat cerebellum. Synapse 16, 284–311.

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini, E., Osen, K.K., Dahl, A.-L., Friedrich, V.L.. and Korte, G. (1980) Fine structure of granule cells and re-lated interneurons (termed Golgi cells) in the cochlear nuclear complex of cat, rat, and mouse. J. Neurocy-tol. 9, 537–570.

    Article  CAS  Google Scholar 

  • Musicant, A. D., Chan, J. C. K., and Hind, J. E. (1990) Direction-dependent spectral properties of cat external ear: New data and cross-species comparisons. J. Acoust. Soc. Am. 87, 757–781.

    Article  PubMed  CAS  Google Scholar 

  • Nelken, I. and Young, E. D. (1994) Two separate inhibitory mechanisms shape the responses of dorsal cochlear nu-cleus type IV units to narrowband and wideband stimuli. J. Neurophysiol. 71, 2446–2462.

    PubMed  CAS  Google Scholar 

  • Oertel, D. (1985) Use of brain slices in the study of the auditory system; spatial and temporal summation of synap-tic inputs in cells in the anteroventral cochlear nucleus of the mouse. J. Acous. Soc. Am. 78, 328–333.

    Article  CAS  Google Scholar 

  • Oertel, D. and Wickesberg, R. E. (1993) Glycinergic inhibition in the cochlear nuclei: evidence for tuberculoven-tral neurons being glycinergic. In: The Mammalian Coehlear Nuclei: Organization and Function, edited by M. A. Merchan, J. M. Juiz and D. A. Godfrey. New York: Plenum Publishing Corp., p. 225–237.

    Google Scholar 

  • Oertel, D. and Wu, S. H. (1989) Morphology and physiology of cells in slice preparations of the dorsal cochlear nucleus of mice. J. Comp. Neurol. 283, 228–247.

    Article  PubMed  CAS  Google Scholar 

  • Oertel, D., Wu, S. H., Garb, M.W. and Dizack, C. (1990) Morphology and physiology of cells in slice preparations of the posteroventral cochlear nucleus of mice. J. Comp. Neurol. 295, 136–154.

    Article  PubMed  CAS  Google Scholar 

  • Oliver, D. L. (1984) Dorsal cochlear nucleus projections to the inferior colliculus in the cat: a light and electron microscopic study. J. Comp. Neurol. 224, 155–172.

    Article  PubMed  CAS  Google Scholar 

  • Osen, K.K.. (1970) Course and termination of the primary afférents in the cochlear nuclei of the cat. Arch. Ital. Biol. 108, 21–51.

    PubMed  CAS  Google Scholar 

  • Osen, K.K. (1972) Projection of the cochlear nuclei on the inferior colliculus in the cat. J. Comp. Neurol. 144, 355–372.

    Article  PubMed  CAS  Google Scholar 

  • Osen, K. K., Ottersen, O. P., and Storm-Mathisen, J. (1990) Colocalization of glycine-like and GABA-like im-munoreactivities: A semiquantitative study of individual neurons in the dorsal cochlear nucleus of cat. In: Glycine Neurotransmission, edited by O. P. Ottersen and J. Storm-Mathisen. New York: John Wiley and Sons, p. 417–451.

    Google Scholar 

  • Parham, K. and Kim, D. O. (1995) Spontaneous and sound-evoked discharge characteristics of complex-spiking neurons in the dorsal cochlear nucleus of the unanesthetized decerebrate cat. J. Neurophysiol. 73, 550–561.

    PubMed  CAS  Google Scholar 

  • Rhode, W.S., Smith, P.H. and Oertel, D. (1983) Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat dorsal cochlear nucleus. J. Comp. Neurol. 213, 426–447.

    Article  PubMed  CAS  Google Scholar 

  • Rice, J. J., May, B. J., Spirou, G. A., and Young, E. D. (1992) Pinna-based spectral cues for sound localization in cat. Hear. Res. 58, 132–152.

    Article  PubMed  CAS  Google Scholar 

  • Ryugo, D. K., Willard, F. H., and Fekete, D. M. (1981) Differential afferent projections to the inferior colliculus from the cochlear nucleus in the albino mouse. Brain Res. 210, 342–349.

    Article  PubMed  CAS  Google Scholar 

  • Spirou, G. A. and Young, E. D. (1991) Organization of dorsal cochlear nucleus type IV unit response maps and their relationship to activation by bandlimited noise. J. Neurophysiol. 66, 1750–1768.

    PubMed  CAS  Google Scholar 

  • Sutherland. D.P. (1991) A role of the dorsal cochlear nucleus in the localization of elevated sound sources. Ass. Res. Otolaryng. Abstr. 14, 33–33.

    Google Scholar 

  • Weinberg. R. J. and Rustioni, A. (1987) A cuneocochlear pathway in the rat. Neurosci. 20. 209–219.

    Article  CAS  Google Scholar 

  • Wenthold, R. J., Huie, D., Altschuler, R. A., and Reeks, K. A. (1987) Glycine immunoreactivity localized in the cochlear nucleus and superior olivary complex. Neurosci. 22, 897–912.

    Article  CAS  Google Scholar 

  • Wenzel, E.M.. Arruda, M., Kistler, D., Wightman, F.L. (1993) Localization using nonindividualized head-related transfer functions. J. Acoust. Soc. Am. 94, 111–123.

    Article  PubMed  CAS  Google Scholar 

  • Wickesberg, R.E. (1996) Rapid inhibition in the cochlear nuclear complex of the chinchilla. J. Acoust. Soc. Ain. 100, 1691–1702.

    Article  CAS  Google Scholar 

  • Wickesberg, R. E. and Oertel. D. (1988) Tonotopic projection from the dorsal to the anteroventral cochlear nucleus of mice. J. Comp. Neurol. 268, 389–399.

    Article  PubMed  CAS  Google Scholar 

  • Wickesberg, R.E. and Oertel, D. (1990) Delayed, frequency-specific inhibition in the cochlear nuclei of mice: a mechanism for monaural echo suppression. J. Neurosci. 10. 1762–1768.

    PubMed  CAS  Google Scholar 

  • Wickesberg, R.E., Whitlon, D. and Oertel, D. (1991 ) Tuberculoventral neurons project to the multipolar cell area but not to the octopus cell area of the posteroventral cochlear nucleus. J. Comp. Neurol. 313, 457–68.

    Article  PubMed  CAS  Google Scholar 

  • Wickesberg, R. E., Whitlon, D., and Oertel, D. (1994) In vitro modulation of somatic glycine-like immunoreactiv-ity in presumed glycinergic neurons. J. Comp. Neurol. 339, 311–327.

    Article  PubMed  CAS  Google Scholar 

  • Wouterlood, F. G. and Mugnaini, E. (1984) Cartwheel neurons of the dorsal cochlear nucleus: a Golgi-electron mi-croscopic study in rat. J. Comp. Neurol. 227, 136–157.

    Article  PubMed  CAS  Google Scholar 

  • Wouterlood, F. G., Mugnaini, E., Osen, K. K., and Dahl, A. L. (1984) Stellate neurons in rat dorsal cochlear nu-cleus studies with combined Golgi impregnation and electron microscopy: synaptic connections and mutual coupling by gap junctions. J. Neurocytol. 13, 639–664, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Wright, D.D. and Ryugo, D. K. (1996) Mossy fiber projections from the cunate nucleus to the cochlear nucleus in the rat. J. Comp. Neurol. 365, 159–172.

    Article  PubMed  CAS  Google Scholar 

  • Young, E. D. and Brownell, W. E. (1976) Responses to tones and noise of single cells in dorsal cochlear nucleus of unanesthetized cats. J. Neurophysiol. 39, 282–300.

    PubMed  CAS  Google Scholar 

  • Young, E. D., Nelken, I., and Conley, R. A. (1995) Somatosensory effects on neurons in dorsal cochlear nucleus. J. Neurophysiol. 73, 743–765.

    PubMed  CAS  Google Scholar 

  • Zhang, S. and Oertel, D. (1993a) Cartwheel and superficial stellate cells of the dorsal cochlear nucleus of mice: in-tracellular recordings in slices. J. Neurophysiol. 69, 1384–1397.

    PubMed  CAS  Google Scholar 

  • Zhang, S. and Oertel, D. (1993b) Giant cells of the dorsal cochlear nucleus of mice: intracellular recordings in slices. J. Neurophysiol. 69, 1398–1408.

    PubMed  CAS  Google Scholar 

  • Zhang, S. and Oertel, D. (1993c) Tuberculoventral cells of the dorsal cochlear nucleus of mice: intracellular recordings. J. Neurophysiol. 69, 1409–1421.

    PubMed  CAS  Google Scholar 

  • Zhang, S. and Oertel, D. (1994) Neuronal circuits associated with the output of the dorsal cochlear nucleus through fusiform cells. J. Neurophysiol. 71, 914–930.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Oertel, D., Golding, N.L. (1997). Circuits of the Dorsal Cochlear Nucleus. In: Syka, J. (eds) Acoustical Signal Processing in the Central Auditory System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8712-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8712-9_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4673-9

  • Online ISBN: 978-1-4419-8712-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics