Advertisement

Circuits of the Dorsal Cochlear Nucleus

  • Donata Oertel
  • Nace L. Golding

Abstract

The dorsal cochlear nucleus (DCN) has become more intriguing as more is learned about it because, although its anatomical structure has been examined from many perspectives and the responses of individual cells have been studied for more than 25 years, it is not yet possible to identify a physiological function that is carried out by the DCN. In this paper we will examine what is known about the cells of the DCN and their roles in the circuit in a search for clues concerning their function.

Keywords

Giant Cell Granule Cell Molecular Layer Auditory Nerve Mossy Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J. C. (1979) Ascending projections to the inferior colliculus. J. Comp. Neurol. 183, 519–538.PubMedCrossRefGoogle Scholar
  2. Adams, J. C. and Mugnaini, E. (1987) Patterns of glutamate decarboxylase immunostaining in the feline cochlear nuclear complex studied with silver enhancement and electron microscopy. J. Comp. Neurol. 262. 375–401.PubMedCrossRefGoogle Scholar
  3. Bell, C.C., Caputi, A., Grant, K., and Serrier, J. (1993) Storage of a sensory pattern by anti-Hebbian synaptic plas-ticity in electric fish. Proc. Nati. Acad. Sci. 90, 4650–4654.CrossRefGoogle Scholar
  4. Berglund, A. M. and Brown, M. C. (1994) Central trajectories of type II spiral ganglion cells from various co-chlear regions in mice. Hear. Res. 75, 121–130.PubMedCrossRefGoogle Scholar
  5. Berrebi, A. S., Morgan, J. I., and Mugnaini, E. (1990) The Purkinje cell class may extend beyond the cerebellum. J. Neurocytol. 19, 643–654.PubMedCrossRefGoogle Scholar
  6. Berrebi, A. S. and Mugnaini, E. (1991) Distribution and targets of the cartwheel cell axon in the dorsal cochlear nucleus of the guinea pig. Anatomy & Embryology 183, 427–454.Google Scholar
  7. Brown, M. C. and Ledwith, J. V. (1990) Projections of thin (type-II) and thick (type-I) auditory-nerve fibers into the cochlear nucleus of the mouse. Hear. Res. 49, 105–118.PubMedCrossRefGoogle Scholar
  8. Brown, M. C, Berglund, A. M., Kiang, N. Y. S., and Ryugo, D. K. (1988) Central trajectories of type II spiral gan-glion neurons. J. Comp. Neurol. 278, 581–590.PubMedCrossRefGoogle Scholar
  9. Burian, M. and Gestoettner, W. (1988) Projection of primary vestibular afferent fibres to the cochlear nucleus in the guinea pig. Neurosci. Lett. 84, 13–17.PubMedCrossRefGoogle Scholar
  10. Caicedo, A. and Herbert, H. (1993) Topography of descending projections from the inferior colliculus to auditory brainstem nuclei in the rat. J. Comp. Neurol. 328, 377–392.PubMedCrossRefGoogle Scholar
  11. Cant, N.B. and Casseday, J.H. (1986) Projections from the anteroventral cochlear nucleus to the lateral and medial superior olivary nuclei. J. Comp. Neurol. 247, 457–476.PubMedCrossRefGoogle Scholar
  12. Evans, E. F. and Nelson, P. G. (1973) The responses of single neurones in the cochlear nucleus of the cat as a function of their location and the anaesthetic state. Exp. Brain Res. 17, 402–427.PubMedGoogle Scholar
  13. Feliciano, M., Saldaña, E., and Mugnaini, E. (1993) Direct projection from the primary auditory cortex to the nucleus sagulum, superior olivary complex and cochlear nucleus of the albino rat. Soc. Neurosci. Abstr. 19, 1427.Google Scholar
  14. Golding, N. L., and Oertel, D. (1996) Context-dependent action of glycinergic and GABAergic inputs in the dorsal cochlear nucleus. J. Neurosci. 16, 2208–2219.PubMedGoogle Scholar
  15. Golding, N.L. and D. Oertel (1997) Physiological identification of the targets of cartwheel cells in the dorsal cochlear nucleus. J. Neurophysiol. (In press).Google Scholar
  16. Hirsch, J.A. and D. Oertel. (1988a) Intrinsic properties of neurones in the dorsal cochlear nuclei of mice, in vitro. J. Physiol. (London) 396, 535–548.Google Scholar
  17. Hirsch, J.A. and D. Oertel. (1988b) Synaptic connextions in the dorsal cochlear nucleus of mice, in vitro. J. Physiol. (London) 396, 549–562.Google Scholar
  18. Ito, M. Sakurai, M. Tongroach, P. (1982) Long-lasting depression of parallel flber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. J. Physiol. (London) 324, 113–134.Google Scholar
  19. Itoh, K., Kamiya, H., Mitani, A., Yasui, Y., Takada, M., and Mizuno, N. (1987) Direct projections from the dorsal column nuclei and the spinal trigeminal nuclei to the cochlear nuclei in the cat. Brain Res. 400, 145–150.PubMedCrossRefGoogle Scholar
  20. Kane, E. C. (1974) Synaptic organization in the dorsal cochlear nucleus of the cat: A light and electron microscopic study. J. Comp. Neurol. 155, 301–330.PubMedCrossRefGoogle Scholar
  21. Kolston, J., Osen, K.K., Hackney, C.M., Ottersen, O.P., Storm-Mathisen, J. (1992) An atlas of glycine-and GABA-like immunoreactivity and colocalization in the cochlear nuclear complex of the guinea pig. Anat. Embryol. 186, 443–465.PubMedCrossRefGoogle Scholar
  22. Linden, D.J., Dickinson, M.H., Smeyne, M., Connor, J.A. (1991) A long-term depression of AMPA currents in cultured cerebellar Purkinje neurons. Neuron 7, 81–89.PubMedCrossRefGoogle Scholar
  23. Llinás, R. and Sugimori, M. (1980) Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J. Physiol. Lond. 305, 171–195.PubMedGoogle Scholar
  24. Manis. P. B. (1989) Responses to parallel fiber stimulation in the guinea pig dorsal cochlear nucleus in vitro. J. Neurophysiol. 61. 149–161.PubMedGoogle Scholar
  25. Manis. P.B.. Scott, J.C., and Spirou, G.A. (1993) Physiology of the dorsal cochlear nucleus molecular layer. In: The Mammalian Cochlear Nuclei: Organization and Function, edited by M. A. Merchan, J. M. Juiz and D. A. Godfrey. New York: Plenum Publishing Corp., p. 361–371.Google Scholar
  26. Manis, P. B., Spirou, G. A., Wright, D. D., Paydar, S., and Ryugo, D. K.. (1994) Physiology and morphology of complex spiking neurons in the guinea pig dorsal cochlear nucleus. J. Comp. Neurol. 348, 261–276.PubMedCrossRefGoogle Scholar
  27. Mugnaini, E. (1985) GABA neurons in the superficial layers of the rat dorsal cochlear nucleus: light and electron microscopic immunocytochemistry. J. Comp. Neurol. 235, 61–81.PubMedCrossRefGoogle Scholar
  28. Mugnaini, E. and Floris, A. (1994) The unipolar brush cell: a neglected neurons of the mammalian cerebellar cortex. J. Comp. Neurol. 339, 174–180.PubMedCrossRefGoogle Scholar
  29. Mugnaini, E., Floris, A., and Wright-Goss, M. (1994) Extraordinary synapses of the unipolar brush cell: An electron microscopic study in the rat cerebellum. Synapse 16, 284–311.PubMedCrossRefGoogle Scholar
  30. Mugnaini, E., Osen, K.K., Dahl, A.-L., Friedrich, V.L.. and Korte, G. (1980) Fine structure of granule cells and re-lated interneurons (termed Golgi cells) in the cochlear nuclear complex of cat, rat, and mouse. J. Neurocy-tol. 9, 537–570.CrossRefGoogle Scholar
  31. Musicant, A. D., Chan, J. C. K., and Hind, J. E. (1990) Direction-dependent spectral properties of cat external ear: New data and cross-species comparisons. J. Acoust. Soc. Am. 87, 757–781.PubMedCrossRefGoogle Scholar
  32. Nelken, I. and Young, E. D. (1994) Two separate inhibitory mechanisms shape the responses of dorsal cochlear nu-cleus type IV units to narrowband and wideband stimuli. J. Neurophysiol. 71, 2446–2462.PubMedGoogle Scholar
  33. Oertel, D. (1985) Use of brain slices in the study of the auditory system; spatial and temporal summation of synap-tic inputs in cells in the anteroventral cochlear nucleus of the mouse. J. Acous. Soc. Am. 78, 328–333.CrossRefGoogle Scholar
  34. Oertel, D. and Wickesberg, R. E. (1993) Glycinergic inhibition in the cochlear nuclei: evidence for tuberculoven-tral neurons being glycinergic. In: The Mammalian Coehlear Nuclei: Organization and Function, edited by M. A. Merchan, J. M. Juiz and D. A. Godfrey. New York: Plenum Publishing Corp., p. 225–237.Google Scholar
  35. Oertel, D. and Wu, S. H. (1989) Morphology and physiology of cells in slice preparations of the dorsal cochlear nucleus of mice. J. Comp. Neurol. 283, 228–247.PubMedCrossRefGoogle Scholar
  36. Oertel, D., Wu, S. H., Garb, M.W. and Dizack, C. (1990) Morphology and physiology of cells in slice preparations of the posteroventral cochlear nucleus of mice. J. Comp. Neurol. 295, 136–154.PubMedCrossRefGoogle Scholar
  37. Oliver, D. L. (1984) Dorsal cochlear nucleus projections to the inferior colliculus in the cat: a light and electron microscopic study. J. Comp. Neurol. 224, 155–172.PubMedCrossRefGoogle Scholar
  38. Osen, K.K.. (1970) Course and termination of the primary afférents in the cochlear nuclei of the cat. Arch. Ital. Biol. 108, 21–51.PubMedGoogle Scholar
  39. Osen, K.K. (1972) Projection of the cochlear nuclei on the inferior colliculus in the cat. J. Comp. Neurol. 144, 355–372.PubMedCrossRefGoogle Scholar
  40. Osen, K. K., Ottersen, O. P., and Storm-Mathisen, J. (1990) Colocalization of glycine-like and GABA-like im-munoreactivities: A semiquantitative study of individual neurons in the dorsal cochlear nucleus of cat. In: Glycine Neurotransmission, edited by O. P. Ottersen and J. Storm-Mathisen. New York: John Wiley and Sons, p. 417–451.Google Scholar
  41. Parham, K. and Kim, D. O. (1995) Spontaneous and sound-evoked discharge characteristics of complex-spiking neurons in the dorsal cochlear nucleus of the unanesthetized decerebrate cat. J. Neurophysiol. 73, 550–561.PubMedGoogle Scholar
  42. Rhode, W.S., Smith, P.H. and Oertel, D. (1983) Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat dorsal cochlear nucleus. J. Comp. Neurol. 213, 426–447.PubMedCrossRefGoogle Scholar
  43. Rice, J. J., May, B. J., Spirou, G. A., and Young, E. D. (1992) Pinna-based spectral cues for sound localization in cat. Hear. Res. 58, 132–152.PubMedCrossRefGoogle Scholar
  44. Ryugo, D. K., Willard, F. H., and Fekete, D. M. (1981) Differential afferent projections to the inferior colliculus from the cochlear nucleus in the albino mouse. Brain Res. 210, 342–349.PubMedCrossRefGoogle Scholar
  45. Spirou, G. A. and Young, E. D. (1991) Organization of dorsal cochlear nucleus type IV unit response maps and their relationship to activation by bandlimited noise. J. Neurophysiol. 66, 1750–1768.PubMedGoogle Scholar
  46. Sutherland. D.P. (1991) A role of the dorsal cochlear nucleus in the localization of elevated sound sources. Ass. Res. Otolaryng. Abstr. 14, 33–33.Google Scholar
  47. Weinberg. R. J. and Rustioni, A. (1987) A cuneocochlear pathway in the rat. Neurosci. 20. 209–219.CrossRefGoogle Scholar
  48. Wenthold, R. J., Huie, D., Altschuler, R. A., and Reeks, K. A. (1987) Glycine immunoreactivity localized in the cochlear nucleus and superior olivary complex. Neurosci. 22, 897–912.CrossRefGoogle Scholar
  49. Wenzel, E.M.. Arruda, M., Kistler, D., Wightman, F.L. (1993) Localization using nonindividualized head-related transfer functions. J. Acoust. Soc. Am. 94, 111–123.PubMedCrossRefGoogle Scholar
  50. Wickesberg, R.E. (1996) Rapid inhibition in the cochlear nuclear complex of the chinchilla. J. Acoust. Soc. Ain. 100, 1691–1702.CrossRefGoogle Scholar
  51. Wickesberg, R. E. and Oertel. D. (1988) Tonotopic projection from the dorsal to the anteroventral cochlear nucleus of mice. J. Comp. Neurol. 268, 389–399.PubMedCrossRefGoogle Scholar
  52. Wickesberg, R.E. and Oertel, D. (1990) Delayed, frequency-specific inhibition in the cochlear nuclei of mice: a mechanism for monaural echo suppression. J. Neurosci. 10. 1762–1768.PubMedGoogle Scholar
  53. Wickesberg, R.E., Whitlon, D. and Oertel, D. (1991 ) Tuberculoventral neurons project to the multipolar cell area but not to the octopus cell area of the posteroventral cochlear nucleus. J. Comp. Neurol. 313, 457–68.PubMedCrossRefGoogle Scholar
  54. Wickesberg, R. E., Whitlon, D., and Oertel, D. (1994) In vitro modulation of somatic glycine-like immunoreactiv-ity in presumed glycinergic neurons. J. Comp. Neurol. 339, 311–327.PubMedCrossRefGoogle Scholar
  55. Wouterlood, F. G. and Mugnaini, E. (1984) Cartwheel neurons of the dorsal cochlear nucleus: a Golgi-electron mi-croscopic study in rat. J. Comp. Neurol. 227, 136–157.PubMedCrossRefGoogle Scholar
  56. Wouterlood, F. G., Mugnaini, E., Osen, K. K., and Dahl, A. L. (1984) Stellate neurons in rat dorsal cochlear nu-cleus studies with combined Golgi impregnation and electron microscopy: synaptic connections and mutual coupling by gap junctions. J. Neurocytol. 13, 639–664, 1984.PubMedCrossRefGoogle Scholar
  57. Wright, D.D. and Ryugo, D. K. (1996) Mossy fiber projections from the cunate nucleus to the cochlear nucleus in the rat. J. Comp. Neurol. 365, 159–172.PubMedCrossRefGoogle Scholar
  58. Young, E. D. and Brownell, W. E. (1976) Responses to tones and noise of single cells in dorsal cochlear nucleus of unanesthetized cats. J. Neurophysiol. 39, 282–300.PubMedGoogle Scholar
  59. Young, E. D., Nelken, I., and Conley, R. A. (1995) Somatosensory effects on neurons in dorsal cochlear nucleus. J. Neurophysiol. 73, 743–765.PubMedGoogle Scholar
  60. Zhang, S. and Oertel, D. (1993a) Cartwheel and superficial stellate cells of the dorsal cochlear nucleus of mice: in-tracellular recordings in slices. J. Neurophysiol. 69, 1384–1397.PubMedGoogle Scholar
  61. Zhang, S. and Oertel, D. (1993b) Giant cells of the dorsal cochlear nucleus of mice: intracellular recordings in slices. J. Neurophysiol. 69, 1398–1408.PubMedGoogle Scholar
  62. Zhang, S. and Oertel, D. (1993c) Tuberculoventral cells of the dorsal cochlear nucleus of mice: intracellular recordings. J. Neurophysiol. 69, 1409–1421.PubMedGoogle Scholar
  63. Zhang, S. and Oertel, D. (1994) Neuronal circuits associated with the output of the dorsal cochlear nucleus through fusiform cells. J. Neurophysiol. 71, 914–930.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Donata Oertel
    • 1
  • Nace L. Golding
    • 1
  1. 1.Department of NeurophysiologyUniversity of Wisconsin Medical SchoolMadisonUSA

Personalised recommendations