Advertisement

Enhanced Processing of Temporal Features of Sounds in Background Noise by Cochlear Nucleus Single Neurons

  • Robert D. Frisina
  • Jian Wang
  • Jonathan D. Byrd
  • Kenneth J. Karcich
  • Richard J. Salvi

Abstract

Sound envelope temporal fluctuations are important for effective processing of biologically-relevant acoustic signals including speech sounds, animal vocalizations, pitch cues, music and sound-source locations. Insights can be gained from previous studies into the nature of how the auditory system processes certain complex sound features. Virtually all of these prior investigations have been carried out utilizing acoustic signals presented in quiet. Representative, key studies will be described that have set the stage for the present investigation. Some of this background has been put forth previously (Frisina et al., 1993).

Keywords

Background Noise Auditory Nerve Cochlear Nucleus Inhibitory Input Auditory Nerve Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arle, J.E. & D.O. Kim (1991) Neural modeling of intrinsic and spike-discharge properties of cochlear nucleus neurons. Biol. Cybernetics, 64, 273–283.CrossRefGoogle Scholar
  2. Banks, M.I. & M.B. Sachs (1991 ) Regularity analysis in a compartmental model of chopper units in the anteroven-tral cochlear nucleus. J. Neurophysiol. 65, 606–629.PubMedGoogle Scholar
  3. Bourk, T.R. (1976) Electrical responses of neural units in the anteroventral cochlear nucleus of the cat. PhD Dissertation. Cambridge, MA: MIT.Google Scholar
  4. Brachman, M.L. (1980) Dynamic response characteristics of single auditory nerve fibers. In (ed): Dissertation & Special Report ISR-S-19. Syracuse, NY: Institute for Sensory Research.Google Scholar
  5. Caspary, D.M. (1990) Electrophysiological studies of glycinergic mechanisms in auditory brain stem structures. In: Glycine Neurotransmission. O.P. Otterson & J. Storm-Mathisen (Eds). NY: J. Wiley & Sons, Ltd., pp. 453–183.Google Scholar
  6. Caspary, D.M., P.M. Backoff, P.G. Finlayson & P.S. Palombi (1994) Inhibitory inputs modulate discharge rate within frequency receptive fields of anteroventral cochlear nucleus neurons. J. Neurophysiol. 72, 2124–2133.PubMedGoogle Scholar
  7. Caspary, D.M., D.C. Havey & C.L. Faingold (1979) Effects of microiontophoretically applied glycine & GABA on neuronal response patterns in cochlear nuclei. Brain Res. 172, 179–85.PubMedCrossRefGoogle Scholar
  8. Caspary, D.M., K.E. Pazara, M. Kossl & C.L. Faingold (1987) Strychnine alters the fusiform cell output from the dorsal cochlear nucleus. Brain Res. 417, 273–282.PubMedCrossRefGoogle Scholar
  9. Caspary, D.M., L.P. Rybak & C.L. Faingold (1984) Baclofen reduces tone-evoked activity of cochlear nucleus neurons. Hearing Res. 13, 113–122.CrossRefGoogle Scholar
  10. Celio, M.R. (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neurosci. 35, 375–475.CrossRefGoogle Scholar
  11. Colombo, J. (1994) Physiological Modeling of Responses to Amplitude Modulated Tones in Background Noise by Cochlear Nucleus Neurons using Naturalistic Inputs. Ph.D. Dissertation. U. Rochester Press.Google Scholar
  12. Colombo, J., Frisina, R.D. & Karcich, K.J. (1992) Quantitative models of ventral cochlear nucleus neurons: Pure tone response predictions. Assoc. Res. Otolaryngology Abstr. 15, 27.Google Scholar
  13. Colombo, J., Frisina, R.D., Karcich, K.J. & Swartz, K.P. (1991) Computational models of ventral cochlear nucleus neurons. International Brain Res. Org. — World Congress Abstr. 3, 250.Google Scholar
  14. Cooper, N.P., D. Robertson & G.K. Yates (1993) Cochlear nerve fiber responses to amplitude-modulated stimuli: Variations with spontaneous rate and other response characteristics. J. Neurophysiol. 70, 370–386.PubMedGoogle Scholar
  15. Costalupes, J.A., E.D. Young & D.J. Gibson (1984) Effects of continuous noise backgrounds on rate response of auditory-nerve fibers in cat. J. Neurophysiol. 51, 1326–1344.PubMedGoogle Scholar
  16. Evans, E.F. & A.R. Palmer (1980) Dynamic range of cochlear nerve fibers to amplitude modulated tones. J. Physiol. 298, 33–34P.Google Scholar
  17. Evans, E.J. & P.G. Nelson (1973) The responses of single neurones in the cochlear nucleus of the at as a function of their location and the anesthetic state. Exp. Brain Res. 17, 402–427.PubMedGoogle Scholar
  18. Frisina, R.D. (1983) Enhancement of responses to amplitude modulation in the gerbil cochlear nucleus: Single-unit recordings using an improved surgical approach. In: Dissertation & Special Report ISR-S-23. Syracuse, NY: Institute for Sensory Research, p. 203.Google Scholar
  19. Frisina, R.D., S.C. Chamberlain, M.L. Brachman, & R.L. Smith (1982) Anatomy and physiology of the gerbil cochlear nucleus: an improved surgical approach for microelectrode studies. Hearing Res. 6, 259–275.CrossRefGoogle Scholar
  20. Frisina, R.D., Karcich, K.J.. Sullivan, D., Tracy, T., Colombo, J. & Walton, J.P. (1996) Preservation of amplitude modulation coding in background noise by auditory-nerve fibers. J. Acoustical Society Am. 99, 457–90.Google Scholar
  21. Frisina, R.D., O’Neill, W.E. & Zettel, M.L. (1989) Functional organization ofmustached bat inferior colliculus. II. Connections of the FM, region. J. Comparative Neurology 284, 85–107.CrossRefGoogle Scholar
  22. Frisina, R.D., R.L. Smith, and S.C. Chamberlain (1985) Differential encoding of rapid changes in sound amplitude by second-order auditory neurons. Exp. Brain Res. 60, 417–22.PubMedCrossRefGoogle Scholar
  23. Frisina, R.D., Smith, R.L. and Chamberlain, S.C. (1990a) Encoding of amplitude modulation in the gerbil cochlear nucleus: I. A hierarchy of enhancement. Hearing Research. 44, 99–122.PubMedCrossRefGoogle Scholar
  24. Frisina, R.D., Smith, R.L. and Chamberlain, S.C. (1990b) Encoding of amplitude modulation in the gerbil cochlear nucleus: II. Possible neural mechanisms. Hearing Research. 44, 123–141.PubMedCrossRefGoogle Scholar
  25. Frisina, R.D. & Walton, J.P. (1991) Processing of rapid changes in sound amplitude in the cochlear nucleus in quiet and in the presence of noise. International Brain Res. Organization-World Congress Abstr. 3, 250.Google Scholar
  26. Frisina, R.D., Walton. J.P., Karcich, K.J. & Colombo. J. (1992) Effects of background noise on the processing of AM in the cochlear nucleus. Assoc. Res. Otolaryngol. Abstr. 15. 78.Google Scholar
  27. Frisina, R.D., Walton, J.P. & Karcich, K.J. (1993) Differential abilities to extract sound-envelope information by auditory nerve and cochlear nucleus neurons. In: Sensory Research: Multimodal Perspectives. R.T. Verrillo (Ed.) (Hillsdale, NJ: L. Erlbaum Assoc, Inc.) pp. 151–175.Google Scholar
  28. Frisina, R.D., Walton, J.P. & Karcich, K.J. (1994) Dorsal cochlear nucleus single neurons can enhance temporal processing capabilities in background noise. Exp. Brain Res. 102, 160–164.PubMedCrossRefGoogle Scholar
  29. Geisler, CD. & D.G. Sinex (1980) Responses of primary auditory fibers to combined noise and tonal stimuli. Hearing Res. 3, 317–334.CrossRefGoogle Scholar
  30. Gibson, DJ., E.D. Young & J.A. Costalupes (1985) Similarity of dynamic range adjustment in auditory nerve and cochlear nuclei. J. Neurophysiol. 53, 940–958.PubMedGoogle Scholar
  31. Havey. D.C. & D.M. Caspary (1980) A simple technique for constructing ‘piggy-back’ multi-barrel tnicroelec-trodes. Electroenceph. Clin. Neurophysiol. 48, 249–251.PubMedCrossRefGoogle Scholar
  32. Hewitt. M.J., Meddis, R. & Shackelton, T.M. (1992) A computer model of a cochlear-nucleus stellate cell: Responses to amplitude modulated and pure-tone stimuli. J. Acoust. Soc. Am. 91, 2096–2109.PubMedCrossRefGoogle Scholar
  33. Javel, E. (1980) Coding of AM tones in the chinchilla auditory nerve: implications for the pitch of complex tones. J. Acoust. Soc. Am. 68. 133–146.PubMedCrossRefGoogle Scholar
  34. Joris. P.X. & Yin. T.C.T. (1992) Responses to amplitude-modulated tones in the auditory nerve of the cat. J. Acoust. Soc. Am. 91, 215–232.PubMedCrossRefGoogle Scholar
  35. Kane, E.S. (1978) Primary afférents and the cochlear nucleus. In R.F. Naunton and C. Fernandez (eds): Evoked electrical Activity in the Auditory Nervous system. New York: Academic Press, pp. 337–352.Google Scholar
  36. Kim, D.O.. J.G. Sirianni & S.O. Chang (1990) Responses of DCN-PVCN neurons and auditory nerve fibers in unanesthetized decerebrate cats to AM and pure tones: Analysis with autocorrelation/power-spectrum. Hearing Res. 45, 95–113.CrossRefGoogle Scholar
  37. Manis, P.B. (1989) Response to parallel fiber stimulation in the guinea pig dorsal cochlear nucleus. J. Neuro-physiol. 61, 149–161.Google Scholar
  38. Manis, P.B. (1990) Membrane properties and discharge characteristics of guinea pig dorsal cochlear nucleus neurons studied in vitro. J. Neurosci. 10, 2338–2351.PubMedGoogle Scholar
  39. Møller, A.R. (1972) Coding of amplitude and frequency modulated sounds in the cochlear nucleus of the rat. Acta. Physiol. Scand. 86, 223–238.PubMedCrossRefGoogle Scholar
  40. Møller, A.R. (1973) Statistical evaluation of the dynamic properties of cochlear nucleus units using stimuli modulated with pseudorandom noise. Brain Res. 57, 443–56.PubMedCrossRefGoogle Scholar
  41. Møller, A.R. (1974a) Coding of amplitude and frequency modulated sounds in the cochlear nucleus. Acústica 31, 202–299.Google Scholar
  42. Møler, A.R. (1974b) Responses of units in the cochlear nucleus to sinusoidally amplitude-modulated tones. Exp. Neurol. 45, 104–117.CrossRefGoogle Scholar
  43. Møller, A.R. (1975a) Dynamic properties of excitation and inhibition in the cochlear nucleus. Acta. Physiol. Scand. 93, 442–154.PubMedCrossRefGoogle Scholar
  44. Møller, A.R. (1975b) Latency of unit responses in cochlear nucleus determined in two different ways. J. Neurophysiol. 38, 812–821.PubMedGoogle Scholar
  45. Møller, A.R. (1976a) Dynamic properties of primary auditory fibers compared with cells in the cochlear nucleus. Acta. Physiol. Scan. 98, 157–167.CrossRefGoogle Scholar
  46. Møller, A.R. (1976b) Dynamic properties of excitation and 2-tone inhibition in the cochlear nucleus studied using amplitude modulated tones. Exp. Brain Res. 25, 307–321.PubMedCrossRefGoogle Scholar
  47. Møller, A.R. (1976c) Dynamic properties of the responses of single neurones in the cochlear nucleus of the rat. J. Physiol. 259, 63–82.PubMedGoogle Scholar
  48. Oertel, D. (1983) Synaptic responses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus. J. Neurosci. 3, 2043–2053.PubMedGoogle Scholar
  49. Oertel, D., S.H. Wu, M.W. Garb & C. Dizack (1990) Morphology and physiology of cells in slice preparations of the posteroventral cochlear nucleus of mice. J. Comp. Neurol. 295, 136–154.Google Scholar
  50. Park, T.J. & G.D. Pollak (1993a) GABA shapes sensitivity to interaural intensity disparities in the mustache bat’s inferior colliculus: implications for encoding sound location. J. Neurosci. 13, 2050–2067.PubMedGoogle Scholar
  51. Park, T.J. & G.D. Pollak (1993b) GABA shapes a topographic organization of response latency in the mustache bat’s inferior colliculus. J. Neurosci. 13, 5172–5187.PubMedGoogle Scholar
  52. Park, T.J. & G.D. Pollak (1994) Azimuthal receptive fields are shaped by GABAergic inhibition in the inferior colliculus of the mustache bat. J. Neurophysiol. 72, 1080–1102.PubMedGoogle Scholar
  53. Rhode, W.S. (1994) Temporal coding of 200% amplitude modulated signals in the ventral cochlear nucleus of cat. Hearing Res. 77, 43–68.CrossRefGoogle Scholar
  54. Rhode, W.S. & Greenberg, S. (1986) Encoding of amplitude modulation in the cochlear nucleus of the cat. J. Neurophysiol. 71, 1797–1825.Google Scholar
  55. Rhode, W.S. & Smith. PH. (1986) Encoding timing and intensity in the ventral cochlear nucleus of the cat. J. Neurophysiol. 56, 261–286.PubMedGoogle Scholar
  56. Shofner. W. & Young, E.D. (1985) Excitatory/inhibitory response types in the cochlear nucleus: Discharge patterns and responses to electrical stimulation in the auditory nerve. J. Neurophysiol. 54, 917–939.PubMedGoogle Scholar
  57. Smith, R.L., & M.L. Brachman (1980) Response modulation of auditory-nerve fibers by AM stimuli: effects of average intensity. Hearing Res. 2, 123–144.CrossRefGoogle Scholar
  58. Voigt, H.F. & Young, E.D. (1980) Evidence of inhibitory interactions between neurons in the dorsal cochlear nucleus. J. Neurophysiol. 44. 76–96.PubMedGoogle Scholar
  59. Voigt. H.F. & Young, E.D. (1990) Cross-correlation analysis of inhibitory interactions in dorsal cochlear nucleus. J. Neurophysiol. 64, 1590–1610.PubMedGoogle Scholar
  60. Wu, S.H. & Oertel, D. (1986) Inhibitory circuitry in the ventral cochlear nucleus is probably mediated by glycine. J. Neurosci. 6, 2691–2706.PubMedGoogle Scholar
  61. Yates, G.K. (1987) Dynamic effects in the input/output relationship of auditory nerve fibers. Hear. Res. 27, 221–230.PubMedCrossRefGoogle Scholar
  62. Young, E.D. (1984) Response characteristics of neurons of the cochlear nuclei. In C.I. Berlin (ed.): Hearing Science. Recent Advances. San Diego: College Hill Press, pp. 423–160.Google Scholar
  63. Young, E.D., Spirou, G.A., Rice, J.J. & Voigt, H.F. (1992) Neural organization and responses to complex stimuli in the dorsal cochlear nucleus. Phil. Trans. Roy. Soc. Lond. B, 336, 407–113.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Robert D. Frisina
    • 1
  • Jian Wang
    • 2
  • Jonathan D. Byrd
    • 1
  • Kenneth J. Karcich
    • 1
  • Richard J. Salvi
    • 2
  1. 1.Otolaryngology Division Dept. of SurgeryUniversity of Rochester School of Medicine & DentistryRochesterUSA
  2. 2.Hearing Research LaboratoryUniversity of BuffaloBuffaloUSA

Personalised recommendations