Skip to main content

Enhanced Processing of Temporal Features of Sounds in Background Noise by Cochlear Nucleus Single Neurons

  • Chapter

Abstract

Sound envelope temporal fluctuations are important for effective processing of biologically-relevant acoustic signals including speech sounds, animal vocalizations, pitch cues, music and sound-source locations. Insights can be gained from previous studies into the nature of how the auditory system processes certain complex sound features. Virtually all of these prior investigations have been carried out utilizing acoustic signals presented in quiet. Representative, key studies will be described that have set the stage for the present investigation. Some of this background has been put forth previously (Frisina et al., 1993).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arle, J.E. & D.O. Kim (1991) Neural modeling of intrinsic and spike-discharge properties of cochlear nucleus neurons. Biol. Cybernetics, 64, 273–283.

    Article  CAS  Google Scholar 

  • Banks, M.I. & M.B. Sachs (1991 ) Regularity analysis in a compartmental model of chopper units in the anteroven-tral cochlear nucleus. J. Neurophysiol. 65, 606–629.

    PubMed  CAS  Google Scholar 

  • Bourk, T.R. (1976) Electrical responses of neural units in the anteroventral cochlear nucleus of the cat. PhD Dissertation. Cambridge, MA: MIT.

    Google Scholar 

  • Brachman, M.L. (1980) Dynamic response characteristics of single auditory nerve fibers. In (ed): Dissertation & Special Report ISR-S-19. Syracuse, NY: Institute for Sensory Research.

    Google Scholar 

  • Caspary, D.M. (1990) Electrophysiological studies of glycinergic mechanisms in auditory brain stem structures. In: Glycine Neurotransmission. O.P. Otterson & J. Storm-Mathisen (Eds). NY: J. Wiley & Sons, Ltd., pp. 453–183.

    Google Scholar 

  • Caspary, D.M., P.M. Backoff, P.G. Finlayson & P.S. Palombi (1994) Inhibitory inputs modulate discharge rate within frequency receptive fields of anteroventral cochlear nucleus neurons. J. Neurophysiol. 72, 2124–2133.

    PubMed  CAS  Google Scholar 

  • Caspary, D.M., D.C. Havey & C.L. Faingold (1979) Effects of microiontophoretically applied glycine & GABA on neuronal response patterns in cochlear nuclei. Brain Res. 172, 179–85.

    Article  PubMed  CAS  Google Scholar 

  • Caspary, D.M., K.E. Pazara, M. Kossl & C.L. Faingold (1987) Strychnine alters the fusiform cell output from the dorsal cochlear nucleus. Brain Res. 417, 273–282.

    Article  PubMed  CAS  Google Scholar 

  • Caspary, D.M., L.P. Rybak & C.L. Faingold (1984) Baclofen reduces tone-evoked activity of cochlear nucleus neurons. Hearing Res. 13, 113–122.

    Article  CAS  Google Scholar 

  • Celio, M.R. (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neurosci. 35, 375–475.

    Article  CAS  Google Scholar 

  • Colombo, J. (1994) Physiological Modeling of Responses to Amplitude Modulated Tones in Background Noise by Cochlear Nucleus Neurons using Naturalistic Inputs. Ph.D. Dissertation. U. Rochester Press.

    Google Scholar 

  • Colombo, J., Frisina, R.D. & Karcich, K.J. (1992) Quantitative models of ventral cochlear nucleus neurons: Pure tone response predictions. Assoc. Res. Otolaryngology Abstr. 15, 27.

    Google Scholar 

  • Colombo, J., Frisina, R.D., Karcich, K.J. & Swartz, K.P. (1991) Computational models of ventral cochlear nucleus neurons. International Brain Res. Org. — World Congress Abstr. 3, 250.

    Google Scholar 

  • Cooper, N.P., D. Robertson & G.K. Yates (1993) Cochlear nerve fiber responses to amplitude-modulated stimuli: Variations with spontaneous rate and other response characteristics. J. Neurophysiol. 70, 370–386.

    PubMed  CAS  Google Scholar 

  • Costalupes, J.A., E.D. Young & D.J. Gibson (1984) Effects of continuous noise backgrounds on rate response of auditory-nerve fibers in cat. J. Neurophysiol. 51, 1326–1344.

    PubMed  CAS  Google Scholar 

  • Evans, E.F. & A.R. Palmer (1980) Dynamic range of cochlear nerve fibers to amplitude modulated tones. J. Physiol. 298, 33–34P.

    Google Scholar 

  • Evans, E.J. & P.G. Nelson (1973) The responses of single neurones in the cochlear nucleus of the at as a function of their location and the anesthetic state. Exp. Brain Res. 17, 402–427.

    PubMed  CAS  Google Scholar 

  • Frisina, R.D. (1983) Enhancement of responses to amplitude modulation in the gerbil cochlear nucleus: Single-unit recordings using an improved surgical approach. In: Dissertation & Special Report ISR-S-23. Syracuse, NY: Institute for Sensory Research, p. 203.

    Google Scholar 

  • Frisina, R.D., S.C. Chamberlain, M.L. Brachman, & R.L. Smith (1982) Anatomy and physiology of the gerbil cochlear nucleus: an improved surgical approach for microelectrode studies. Hearing Res. 6, 259–275.

    Article  CAS  Google Scholar 

  • Frisina, R.D., Karcich, K.J.. Sullivan, D., Tracy, T., Colombo, J. & Walton, J.P. (1996) Preservation of amplitude modulation coding in background noise by auditory-nerve fibers. J. Acoustical Society Am. 99, 457–90.

    Google Scholar 

  • Frisina, R.D., O’Neill, W.E. & Zettel, M.L. (1989) Functional organization ofmustached bat inferior colliculus. II. Connections of the FM, region. J. Comparative Neurology 284, 85–107.

    Article  CAS  Google Scholar 

  • Frisina, R.D., R.L. Smith, and S.C. Chamberlain (1985) Differential encoding of rapid changes in sound amplitude by second-order auditory neurons. Exp. Brain Res. 60, 417–22.

    Article  PubMed  CAS  Google Scholar 

  • Frisina, R.D., Smith, R.L. and Chamberlain, S.C. (1990a) Encoding of amplitude modulation in the gerbil cochlear nucleus: I. A hierarchy of enhancement. Hearing Research. 44, 99–122.

    Article  PubMed  CAS  Google Scholar 

  • Frisina, R.D., Smith, R.L. and Chamberlain, S.C. (1990b) Encoding of amplitude modulation in the gerbil cochlear nucleus: II. Possible neural mechanisms. Hearing Research. 44, 123–141.

    Article  PubMed  CAS  Google Scholar 

  • Frisina, R.D. & Walton, J.P. (1991) Processing of rapid changes in sound amplitude in the cochlear nucleus in quiet and in the presence of noise. International Brain Res. Organization-World Congress Abstr. 3, 250.

    Google Scholar 

  • Frisina, R.D., Walton. J.P., Karcich, K.J. & Colombo. J. (1992) Effects of background noise on the processing of AM in the cochlear nucleus. Assoc. Res. Otolaryngol. Abstr. 15. 78.

    Google Scholar 

  • Frisina, R.D., Walton, J.P. & Karcich, K.J. (1993) Differential abilities to extract sound-envelope information by auditory nerve and cochlear nucleus neurons. In: Sensory Research: Multimodal Perspectives. R.T. Verrillo (Ed.) (Hillsdale, NJ: L. Erlbaum Assoc, Inc.) pp. 151–175.

    Google Scholar 

  • Frisina, R.D., Walton, J.P. & Karcich, K.J. (1994) Dorsal cochlear nucleus single neurons can enhance temporal processing capabilities in background noise. Exp. Brain Res. 102, 160–164.

    Article  PubMed  CAS  Google Scholar 

  • Geisler, CD. & D.G. Sinex (1980) Responses of primary auditory fibers to combined noise and tonal stimuli. Hearing Res. 3, 317–334.

    Article  CAS  Google Scholar 

  • Gibson, DJ., E.D. Young & J.A. Costalupes (1985) Similarity of dynamic range adjustment in auditory nerve and cochlear nuclei. J. Neurophysiol. 53, 940–958.

    PubMed  CAS  Google Scholar 

  • Havey. D.C. & D.M. Caspary (1980) A simple technique for constructing ‘piggy-back’ multi-barrel tnicroelec-trodes. Electroenceph. Clin. Neurophysiol. 48, 249–251.

    Article  PubMed  CAS  Google Scholar 

  • Hewitt. M.J., Meddis, R. & Shackelton, T.M. (1992) A computer model of a cochlear-nucleus stellate cell: Responses to amplitude modulated and pure-tone stimuli. J. Acoust. Soc. Am. 91, 2096–2109.

    Article  PubMed  CAS  Google Scholar 

  • Javel, E. (1980) Coding of AM tones in the chinchilla auditory nerve: implications for the pitch of complex tones. J. Acoust. Soc. Am. 68. 133–146.

    Article  PubMed  CAS  Google Scholar 

  • Joris. P.X. & Yin. T.C.T. (1992) Responses to amplitude-modulated tones in the auditory nerve of the cat. J. Acoust. Soc. Am. 91, 215–232.

    Article  PubMed  CAS  Google Scholar 

  • Kane, E.S. (1978) Primary afférents and the cochlear nucleus. In R.F. Naunton and C. Fernandez (eds): Evoked electrical Activity in the Auditory Nervous system. New York: Academic Press, pp. 337–352.

    Google Scholar 

  • Kim, D.O.. J.G. Sirianni & S.O. Chang (1990) Responses of DCN-PVCN neurons and auditory nerve fibers in unanesthetized decerebrate cats to AM and pure tones: Analysis with autocorrelation/power-spectrum. Hearing Res. 45, 95–113.

    Article  CAS  Google Scholar 

  • Manis, P.B. (1989) Response to parallel fiber stimulation in the guinea pig dorsal cochlear nucleus. J. Neuro-physiol. 61, 149–161.

    CAS  Google Scholar 

  • Manis, P.B. (1990) Membrane properties and discharge characteristics of guinea pig dorsal cochlear nucleus neurons studied in vitro. J. Neurosci. 10, 2338–2351.

    PubMed  CAS  Google Scholar 

  • Møller, A.R. (1972) Coding of amplitude and frequency modulated sounds in the cochlear nucleus of the rat. Acta. Physiol. Scand. 86, 223–238.

    Article  PubMed  Google Scholar 

  • Møller, A.R. (1973) Statistical evaluation of the dynamic properties of cochlear nucleus units using stimuli modulated with pseudorandom noise. Brain Res. 57, 443–56.

    Article  PubMed  Google Scholar 

  • Møller, A.R. (1974a) Coding of amplitude and frequency modulated sounds in the cochlear nucleus. Acústica 31, 202–299.

    Google Scholar 

  • Møler, A.R. (1974b) Responses of units in the cochlear nucleus to sinusoidally amplitude-modulated tones. Exp. Neurol. 45, 104–117.

    Article  Google Scholar 

  • Møller, A.R. (1975a) Dynamic properties of excitation and inhibition in the cochlear nucleus. Acta. Physiol. Scand. 93, 442–154.

    Article  PubMed  Google Scholar 

  • Møller, A.R. (1975b) Latency of unit responses in cochlear nucleus determined in two different ways. J. Neurophysiol. 38, 812–821.

    PubMed  Google Scholar 

  • Møller, A.R. (1976a) Dynamic properties of primary auditory fibers compared with cells in the cochlear nucleus. Acta. Physiol. Scan. 98, 157–167.

    Article  Google Scholar 

  • Møller, A.R. (1976b) Dynamic properties of excitation and 2-tone inhibition in the cochlear nucleus studied using amplitude modulated tones. Exp. Brain Res. 25, 307–321.

    Article  PubMed  Google Scholar 

  • Møller, A.R. (1976c) Dynamic properties of the responses of single neurones in the cochlear nucleus of the rat. J. Physiol. 259, 63–82.

    PubMed  Google Scholar 

  • Oertel, D. (1983) Synaptic responses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus. J. Neurosci. 3, 2043–2053.

    PubMed  CAS  Google Scholar 

  • Oertel, D., S.H. Wu, M.W. Garb & C. Dizack (1990) Morphology and physiology of cells in slice preparations of the posteroventral cochlear nucleus of mice. J. Comp. Neurol. 295, 136–154.

    Google Scholar 

  • Park, T.J. & G.D. Pollak (1993a) GABA shapes sensitivity to interaural intensity disparities in the mustache bat’s inferior colliculus: implications for encoding sound location. J. Neurosci. 13, 2050–2067.

    PubMed  CAS  Google Scholar 

  • Park, T.J. & G.D. Pollak (1993b) GABA shapes a topographic organization of response latency in the mustache bat’s inferior colliculus. J. Neurosci. 13, 5172–5187.

    PubMed  CAS  Google Scholar 

  • Park, T.J. & G.D. Pollak (1994) Azimuthal receptive fields are shaped by GABAergic inhibition in the inferior colliculus of the mustache bat. J. Neurophysiol. 72, 1080–1102.

    PubMed  CAS  Google Scholar 

  • Rhode, W.S. (1994) Temporal coding of 200% amplitude modulated signals in the ventral cochlear nucleus of cat. Hearing Res. 77, 43–68.

    Article  CAS  Google Scholar 

  • Rhode, W.S. & Greenberg, S. (1986) Encoding of amplitude modulation in the cochlear nucleus of the cat. J. Neurophysiol. 71, 1797–1825.

    Google Scholar 

  • Rhode, W.S. & Smith. PH. (1986) Encoding timing and intensity in the ventral cochlear nucleus of the cat. J. Neurophysiol. 56, 261–286.

    PubMed  CAS  Google Scholar 

  • Shofner. W. & Young, E.D. (1985) Excitatory/inhibitory response types in the cochlear nucleus: Discharge patterns and responses to electrical stimulation in the auditory nerve. J. Neurophysiol. 54, 917–939.

    PubMed  CAS  Google Scholar 

  • Smith, R.L., & M.L. Brachman (1980) Response modulation of auditory-nerve fibers by AM stimuli: effects of average intensity. Hearing Res. 2, 123–144.

    Article  CAS  Google Scholar 

  • Voigt, H.F. & Young, E.D. (1980) Evidence of inhibitory interactions between neurons in the dorsal cochlear nucleus. J. Neurophysiol. 44. 76–96.

    PubMed  CAS  Google Scholar 

  • Voigt. H.F. & Young, E.D. (1990) Cross-correlation analysis of inhibitory interactions in dorsal cochlear nucleus. J. Neurophysiol. 64, 1590–1610.

    PubMed  CAS  Google Scholar 

  • Wu, S.H. & Oertel, D. (1986) Inhibitory circuitry in the ventral cochlear nucleus is probably mediated by glycine. J. Neurosci. 6, 2691–2706.

    PubMed  CAS  Google Scholar 

  • Yates, G.K. (1987) Dynamic effects in the input/output relationship of auditory nerve fibers. Hear. Res. 27, 221–230.

    Article  PubMed  CAS  Google Scholar 

  • Young, E.D. (1984) Response characteristics of neurons of the cochlear nuclei. In C.I. Berlin (ed.): Hearing Science. Recent Advances. San Diego: College Hill Press, pp. 423–160.

    Google Scholar 

  • Young, E.D., Spirou, G.A., Rice, J.J. & Voigt, H.F. (1992) Neural organization and responses to complex stimuli in the dorsal cochlear nucleus. Phil. Trans. Roy. Soc. Lond. B, 336, 407–113.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Frisina, R.D., Wang, J., Byrd, J.D., Karcich, K.J., Salvi, R.J. (1997). Enhanced Processing of Temporal Features of Sounds in Background Noise by Cochlear Nucleus Single Neurons. In: Syka, J. (eds) Acoustical Signal Processing in the Central Auditory System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8712-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8712-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4673-9

  • Online ISBN: 978-1-4419-8712-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics