Skip to main content

Diagnostics for Energetic Charged Particles Related to Fast Ignitor Experiments

For invited volumes

  • Chapter
  • 514 Accesses

Abstract

To demonstrate the feasibility of the fast ignitor scheme,1,2 a 100 TW Petawatt Module laser (PWM) was illuminated onto an uniformly imploded spherical shell target. The neutron yield is enhanced from below 105 up to 106 for the first time and agree with those estimated from the simultaneously detected high energy deuteron yield and spectrum. A few hundred keV deuterons collide with the cold deuterons in core. Without PWM, no neutrons are observed above the detection threshold of 105.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, 1, 1626 (1994).

    Google Scholar 

  2. K.A. Tanaka et al., Phys. Plasmas7, 2014–2022 (2000).

    Article  ADS  Google Scholar 

  3. Y. Kato et al., Plasma Phys. Controlled Fusion39, 1801 (1994).

    Google Scholar 

  4. Y. Kitagawa et al., “Final Report on PWM Laser”, Institute of Laser Engineering, Osaka University (November2000).

    Google Scholar 

  5. H. Takabe, M. Yamanaka, K. Mima et al., Phys. Fluids31, 2884 (1988).

    Article  ADS  Google Scholar 

  6. M. SADOWSKI et al., Radiation Measurments28, 207–210 (1997).

    Article  Google Scholar 

  7. A. P. Fews, P. A. Norreys, F. N. Beg, A. R. Bell. A. E. Danger, C. N. Danson, P. Lee, and S. J. Rose, Phys. Rev. Letters73, 1801 (1994).

    Article  ADS  Google Scholar 

  8. E. L. Clark, K. Krushelnick, J. R. Davis et al., Phys. Rev. Letters84, 670 (2000).

    Article  ADS  Google Scholar 

  9. S. P. Hatchett, C. G. Brown, T. E. Cowan et al., Phys. Plasmas7, 2076 (2000).

    Article  ADS  Google Scholar 

  10. S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. P. Hatchett, M. H. Key, D. Pennington, A. Mackinnon, and A. Snavely, Phys. Plasmas8, 542 (2001).

    Article  ADS  Google Scholar 

  11. A. Maksimchuk, S. Gu, K. Flippe, D. Umstadter, and V. Yu. Bychenkov, Phys. Rev. Letters84, 4108 (2000).

    Article  ADS  Google Scholar 

  12. A. Puhkov, Z.-M. Sheng, J. Meyer-ter-Vehn et al., Phys. Plasmas6, 2847 (1999).

    Article  ADS  Google Scholar 

  13. E. G. Gamaly, Phys. FluidsB5, 3765 (1993).

    ADS  Google Scholar 

  14. S. Humphries, Jr., Charged Particle Beams (John Wiley and Sons, Inc., New York, 1990) Ch. 6.

    Google Scholar 

  15. K. Krushelnick, E. L. Clark, Z. Najimudin et al., Phys. Rev. Letters83, 737 (1999).

    Article  ADS  Google Scholar 

  16. Y. Murakami, Y. Kitagawa, Y. Sentoku et al., to be published inPhys. Plasmas, September, 2001.

    Google Scholar 

  17. M. Mori, Y. Kitagawa, R. Kodama et al., Nuclear Instrument Methods in Phys. Research A410, 367 (1998).

    Article  Google Scholar 

  18. Y. Yamada, Y. Kitagawa, M. Yokoyama, and C. Yamanaka, Phys. Letters83A, 9 (1981).

    ADS  Google Scholar 

  19. A. Szydlowski, M. SAdowski, T. Czyzlwski, M. Jaskofa, and A. Korman, Nuclear Instrument Methods in Phys. ResearchB149, 113 (1999).

    Article  ADS  Google Scholar 

  20. Y. Kitagawa, K. A. Tanaka, M. Nakai et al., Phys. Rev. Letters75, 3130 (1995).

    Article  ADS  Google Scholar 

  21. J. F. Ziegler, Stopping and Ranges of Ions in Matter (Pergamon Press, New York, 1980) Vol. 5.

    Google Scholar 

  22. Y. Sentoku, K. Mima, S. Kojima, and H. Ruhl, Phys. Plasmas7, 689 (2000).

    Article  ADS  Google Scholar 

  23. E. Lefebvre and G. Bonnaud, Phys. Review E55, 1011 (1997).

    Article  ADS  Google Scholar 

  24. Y. Sentoku, V. Yu. Bychenkov et al. “High energy ion production from short-laser-pulse interaction with high density plasmas” submitted toPhys. Plasmas.

    Google Scholar 

  25. Wei Yu, V. Bychenkov, Y. Sentoku, M. Y. Yu, Z. M. Sheng, and K. Mima, Phys. Rev. Letters85, 570 (2000).

    Article  ADS  Google Scholar 

  26. H. Yoshida et al., Rev. Laser Eng.27, 291–297 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kitagawa, Y., Mima, K., Tanaka, K., Kodama, R., Sentoku, Y., Yamanaka, T. (2002). Diagnostics for Energetic Charged Particles Related to Fast Ignitor Experiments. In: Stott, P.E., Wootton, A., Gorini, G., Sindoni, E., Batani, D. (eds) Advanced Diagnostics for Magnetic and Inertial Fusion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8696-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8696-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4669-2

  • Online ISBN: 978-1-4419-8696-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics