Skip to main content

Abstract

The history of the accretion of extraterrestrial material onto the Earth covers the entire lifetime of the planet, from the accretion of great quantities of mass at the time the planet formed ∼4.5 Ga, to the much less dramatic infall of stones and dust to the Earth today. Impact craters are the scars left behind when some of the larger portions of this infalling material (impactors) strike the planet’s surface. Craters can therefore be used to measure the amount and frequency of mass that impacts a large body such as the Earth. Although processes rapidly eliminate craters on the Earth, the nearby Moon retains a pristine record of recent cratering events.

This chapter examines the record of recent lunar cratering based on counts of young, bright, lunar craters with immature éjecta in order to place limitations on the nature of the impactor population affecting both the Moon and Earth in recent his- tory. Over time, soils on the lunar surface change (mature) because they are exposed to micrometeorite bombardment and the solar wind. Recent research shows that the maturity of lunar impact crater ejecta can be determined remotely from appropriate multi-spectral data. This ejecta maturity can be used to constrain the relative ages of lunar impact craters. The study of large (>20 km diameter) impact craters indicates that the lunar record does not support the idea of an overall increase in the impactor flux into Earth-Moon space in the last 800 Myr versus the previous 2.4 Gyr.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, E. C, Jr., Bates, A., Coscio, M. R., Jr., Dragon, J. C, Murthy, V R. Peping, R. O., and Venkatesan, R. R. K/Ar dating of lunar soils II. Lunar Planet. Sci. 7, 625 (1976).

    ADS  Google Scholar 

  • Alexander, E. C, Jr., Cosicio, M. R., Jr., Dragon, X C, Peping, R. O., and Saito, K. K/Ar dating of lunar soils III: Comparison of 39Ar-40Ar and conventional techniques; 12032 and the age of Copernicus. Proc. Lunar Planet. Sci. Conf. 8, 2725–2740 (1977).

    ADS  Google Scholar 

  • Alvarez, L. W., Alvarez, W., Asaro, F., and. Michel, H. V Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095–1108 (1980).

    Article  ADS  Google Scholar 

  • Arvidson, R. G., Crozaz, G., Drozd, R. J., Hohenberg, C. M., and Morgan, C. J. Cosmic ray exposure ages for features and events at the Apollo landing sites, Lunar Science Institute, Symposium on Origin and Evolution of the Lunar Regolith, Houston, The Moon 13, 1975, 259–276 (1975).

    Article  ADS  Google Scholar 

  • Baldwin, R. B. Relative and absolute ages of individual craters and the rates of infalls in the Moon in the post-Imbrium period. Icarus 61, 63–91 (1985).

    Article  ADS  Google Scholar 

  • Beaty, D. W. and Albee, A. L. Comparative petrology and possible genetic relations among the Apollo 11 basalts. Proc. Lunar Planet. Sci. Conf. 9, 359–463 (1978).

    ADS  Google Scholar 

  • Belton, M. J. S., Belton, M. J., Greeley, R., Greenberg, R., McEwen, A., Klaasen, K. P., Head, J. W., III, Pieters, C, Neukum, G., Chapman, C. R., Geissler, P., Hefferman, C, Breneman, H., Anger, C, Carr, M. H., Davies, M. E., Fanale, F. P., Gierasch, P. X, Ingersoll, A. P., Johnson, T. V, Pilder, C. B., Thompson, W. R., Veverka, X, and Sagan, C. Galileo multispectral imaging of the north polar and eastern limb regions of the Moon. Science 264, 1112–1115 (1994).

    Article  ADS  Google Scholar 

  • Bernatowicz, T. X, Hohenberg, C. M., Hudson, B., Kennedy, B. M., and Podosek, F. A. Argon ages for lunar breccias 14064 and 15405. Proc. Lunar Planet. Sci. Conf. 9, 905–919 (1978).

    ADS  Google Scholar 

  • Blewett, D. T., Lucey, P. G., Hawke, B. R., and Jolliff, B. L. Clementine images of the lunar sample-return stations: Refinement of FeO and TiO2 mapping techniques. J. Geophys. Res. 102, 16,319–16,325 (1997).

    Article  ADS  Google Scholar 

  • Bogard, D., Garrison, D., McKay, D, and Wentworth, S. The age of Copernicus: New evidence for 800 ± 15 million years. Lunar Planet. Sci. 28, 133–134(1992).

    ADS  Google Scholar 

  • Culler, T. S., Becker, T. A., Muller, R. A., and Renne, P. R. Lunar impact history from 40Ar/39Ar dating of glass spherules. Science 287, 1785–1788 (2000).

    Article  ADS  Google Scholar 

  • Drozd, R. X, Hohenberg, C. M., Morgan, C. X, and Ralston, C. E. Cosmic-ray exposure history at the Apollo 16 and other lunar sites: Lunar surface dynamics. Geochim. Cosmochim. Acta 38, 1625 (1974).

    Article  ADS  Google Scholar 

  • Eliason, E. M., McEwen, A. S., Robinson, M. S., Lee, E. M., Becker, T., Gaddis, L., Weller, L. A., Isbell, C. E., Shinaman, J. R., Duxbury, T., and Malaret, E. Digital processing for a global multispec-tral map of the Moon from Clementine UVVIS imaging instrument. Lunar Planet. Sci. 30, 1933, CD-ROM (1999).

    ADS  Google Scholar 

  • Eugster, O. Chronology of dimict breccias and the age of South Ray crater at the Apollo 16 site. Meteor. Planet. Sci. 34,(1999).

    Google Scholar 

  • Eugster, O., Eberhardt, P., Geiss, X, Grögler, N., Jungck, M., and Mörgeli, M. The cosmic ray exposure his-tory of Shorty Crater samples; the age of Shorty Crater. Proc. Lunar Planet. Sci. Conf. 8, 3059–3082 (1977).

    ADS  Google Scholar 

  • Fischer, E. M. and Pieters, C. M. Remote determination of exposure degree and iron concentration of lunar soils using VIS-NIR spectroscopic methods. Icarus 111, 475–488 (1994).

    Article  ADS  Google Scholar 

  • Fischer, E. M. and Pieters, C. M. Composition and exposure age of the Apollo 16 Cayley and Descartes regions from Clementine data: Normalizing the optical effects of space weathering. J. Geophys. Res. 101, El, 2225–2234 (1996).

    Article  ADS  Google Scholar 

  • Geiss, X, Eberhardt, P., Grögler, N., Guggisberg, S., Maurer, P., and Stettler, A. Absolute time scale of lunar mare formation and filling, “The Moon-a new appraisal from space mission and laboratory analyses.” Phil. Trans. R. Soc. Lond., A 285, 151 (1977).

    Article  ADS  Google Scholar 

  • Grier, X A. Determining the ages of impact events: Multidisciplinary studies using remote sensing and sam-ple analysis techniques. Ph.D. thesis, Univ. Arizona, 230 pp. (1999).

    Google Scholar 

  • Grier, J. A., McEwen, A. S., Strom, R. G, Lucey, P. G., Plassman, J. H., Winburn, I R., and Milazzo, M. A survey of bright lunar craters-developing a relative crater chronology. Lunar Planet. Sci. 30, 1935, CD-ROM (1999a).

    ADS  Google Scholar 

  • Grier, J. A., McEwen, A. S., Lucey, P. G., Strom, R. G., and Milazzo, M. Relative ages of large rayed lunar craters-Implications. Lunar Planet. Sci. 30, 1910, CD-ROM (1999b).

    ADS  Google Scholar 

  • Grier, J. A., McEwen, A. S., Milazzo, M., Hester, J. A., and Lucey, P. G. The optical maturity of éjecta from small bright rayed lunar craters. Lunar Planet. Sci. 31, 1950, CD-ROM (2000).

    ADS  Google Scholar 

  • Grier, J. A., McEwen, A. S., Lucey, P. G., Milazzo, M., and Strom, R. G. The optical maturity of ejecta from large rayed lunar craters.J. Geophys. Res., in press (2001).

    Google Scholar 

  • Grieve, R. A. F. Extraterrestrial impacts on Earth: The evidence and the consequences. Geol. Soc. Lond., Spec. Publ. 146, 105–131 (1998).

    Article  Google Scholar 

  • Grieve, R. A. F. and Shoemaker, E. M. The record of past impacts on earth. In Hazards due to comets and asteroids, (Gehrels, T., Ed.), Univ. Arizona Press, Tucson, 417–462 (1994).

    Google Scholar 

  • Grieve, R. A. F., Sharpton, V L., Rupert, J. D., and Goodacre, A. K. Detecting a periodic signal in the ter-restrial cratering record. Proc. Lunar Planet. Sci. Conf. 18, 375–382 (1988).

    ADS  Google Scholar 

  • Hawke, B. R., MacLaskey, D., and McCord, T. B. Multispectral imaging of lunar crater deposits. Lunar Planet. Sci. Contrib. 394, 50–52 (1979).

    Google Scholar 

  • Hawke, B. R., Blewett, D. T., Lucey, P. G., Peterson, C. A., Bell, J. F. III, Campbell, B. A., and Robinson, M. S. The composition and origin of selected lunar crater rays, new views of the Moon II: Under-standing the Moon through the integration of diverse datasets. New Views of the Moon II: Conf. Proc., 22–23 (1999).

    Google Scholar 

  • Hirata, N., Haruyama, I, Otake, H., and Ohtake, M. Analysis of dark rings around lunar craters using Clementine imaging data. Lunar Planet. Sci. 30, 1350, CD-ROM (1999).

    ADS  Google Scholar 

  • Hörz, F. Mass extinctions and cosmic collisions: A lunar test. In Bases and space activities of the 21st century (Mendell, W. W., Ed.), Lunar Planet. Inst., Houston, 349–358 (1985).

    Google Scholar 

  • Hörz, F., Grieve, R., Heiken, G., Spudis, P., and Binder, A. Lunar surface processes. In The lunar source-book: A user’s guide to the Moon (Heiken, G., Vaniman, D., and French, B., Eds.), Cambridge Univ. Press, Cambridge, 61–120 (1991).

    Google Scholar 

  • Isbell, C, Eliason, E. M., Adams, K. C, Becker, T. L., Bennett, A. L., Lee, E. M., McEwen, A. S., Robin-son, M. S., Shinaman, J. R., and Weller, L. A. Clementine: A multispectral digital image model archive of the Moon. Lunar Planet. Sci. 30, 1812, CD-ROM (1999).

    ADS  Google Scholar 

  • Lucchitta, B. K. Crater clusters and light mantle at the Apollo 17 site: A result of secondary impact from Tycho. Icarus 30, 1, 80 (1977).

    Article  ADS  Google Scholar 

  • Lucey, P. G., Taylor, G. X, and Malaret. E. Abundance and distribution of iron on the Moon. Science 268, 1150–1153 (1995a).

    Article  ADS  Google Scholar 

  • Lucey, P. G., Taylor, G. I, Hawke, B. R., Frost, C, and Blewett, D. Remote absolute age dating of the lunar surface. Bull. Am. Astr. Soc. 27, 54 (1995b).

    Google Scholar 

  • Lucey, P. G., Blewett, D. T, and Hawke, B. R. Mapping FeO and TiO2 content of the lunar surface with mul-tispectral imagery. J. Geophys. Res. 103, E2, 3679–3699 (1998a).

    Article  ADS  Google Scholar 

  • Lucey, P. G., Blewett, D. T., and Hawke, B. R. FeO and TiO2 concentrations in the South Pole Aitken basin: Implications for mantle composition and basin formation. J. Geophys. Res. 103, 3701–3708 (1998b).

    Article  ADS  Google Scholar 

  • Lucey, P. G., Taylor, G., and Hawke, B. R. Global imaging of maturity: Results from Clementine and lunar sample studies. Lunar Planet. Sci. 29, 1356, CD-ROM (1998c).

    ADS  Google Scholar 

  • Lucey, P. G., Taylor, G. J., and Hawke, B. R. Imaging of lunar surface maturity. J. Geophys. Res. 105, 20, 387–20,402 (2000).

    Google Scholar 

  • MacLeod, N. Impacts and marine invertebrate extinctions. Geol. Soc. Lond., Spec. Publ. 146, 217–246 (1998).

    Article  Google Scholar 

  • McEwen, A. S. A Precise lunar photometric function. Proc. Lunar Planet. Sci. Conf. 27, 841 (1996).

    ADS  Google Scholar 

  • McEwen, A. S. and Robinson, M. S. Mapping of the Moon by Clementine. Adv. Space Res. 19, 1523 (1997).

    Article  ADS  Google Scholar 

  • McEwen, A. S., Gaddis, L. R., Neukum, G., Hoffman, H., Pieters, C. M., and Head, J. W. Galileo observa-tions of post-Imbrium lunar craters during the first Earth-Moon flyby. J. Geophys. Res. 98, E9, 17,207–17,234(1993).

    Article  ADS  Google Scholar 

  • McEwen, A. S., Moore, I M., and Shoemaker, E. M. The Phanerozoic impact cratering rate: Evidence from the farside of the Moon. J. Geophys. Res. 102, E4, 9231–9242 (1997).

    Article  ADS  Google Scholar 

  • McEwen, A. S. Eliason, E., Lucey, P., Malaret, E., Pieters, C, Robinson, M., and Sucharski, T. Summary of radiometric calibration and photometric normalizaton steps for the Clementine UVV1S images. Lunar Planet. Sci. 29, 1466, CD-ROM (1998).

    ADS  Google Scholar 

  • McKay, D. S., Heiken, G., Basu, A., Blanford, G., Simon, S., Reedy, R., French, B., and Papike, J. The lunar regolith. In The lunar sourcebook: A user’ s guide to the Moon (Heiken, G., Vaniman, D. T, and French, B., Eds.), Cambridge Univ. Press, Cambridge, 285–356 (1991).

    Google Scholar 

  • Melosh, H. J. Impact cratering: A geologic process. Oxford Univ. Press, New York, 245 pp. (1989).

    Google Scholar 

  • Montanari, A., Campo Bagatin, A., and Farinella, P. Earth cratering record and impact energy flux in the last 150 Ma. Planet. Space Sci. 46, 23, 271–281 (1998).

    Article  ADS  Google Scholar 

  • Morrison, D., Chapman, C. R., and Slovic, P. The impact hazard. In Hazards due to comets and asteroids (Gehrels, T., Ed.), Univ. Arizona Press, Tucson, 59–92 (1994).

    Google Scholar 

  • Napier, W. M. Galactic periodicity and the geological record. Geol. Soc. Lond., Spec. Publ. 140, 19–29 (1998).

    Article  ADS  Google Scholar 

  • Neukum, G. and König, B. Dating of individual lunar craters. Proc. Lunar Sci. Conf. 7, 2867–2881 (1976).

    ADS  Google Scholar 

  • Nozette S., Lewis, I. T., Lichtenberg, C. L., Lucey, P. G., Malaret, E., Massie, M. A., Resnick, J. H., Rollins, C. J., Park, H. S., McEwen, A. S., Priest, R. E., Pieters, C. M., Reisse, R. A., Robinson, M. S., Simpson, R. A., Smith, D. E., Sorenson, T. C, Bruegge, R., Vorder, W., and Zuber, M. T. The Clemen-tine mission to the Moon: Scientific overview. Science 266, 1835 (1994).

    Article  ADS  Google Scholar 

  • Oberbeck, V R. The role of ballistic erosion and sedimentation in lunar stratigraphy. Rev. Geophys. Space Phys. 13, 337–362 (1975).

    Article  ADS  Google Scholar 

  • Pieters, CM., Adams, J. B., Mouginis-Mark, P. J., Zisk, S. H., Smith, M. O., Head, J. W., and McCord, T. B. The nature of crater rays: The Copernicus example. J. Geophys. Res. 90, B14, 12,393–12,413 (1985).

    Article  ADS  Google Scholar 

  • Pieters, C. M., Pratt, S., Hoffman, H., Helfenstein, P., and Mustard, J. Bi-directional spectroscopy of returned lunar soils: Detailed “ground-truth” for planetary remote sensors. Proc. Lunar Planet. Sci. Conf. 11, 1069(1991).

    ADS  Google Scholar 

  • Ryder, G., Bogard, D., and Garrison, D. Probable age of Autolycus and calibration of lunar stratigraphy. Geology 19, 143–146 (1991).

    Article  ADS  Google Scholar 

  • Schultz, P. H. and Gault, D. E., Clustered impacts: Experiments and implications. J. Geophys. Res. 90, 3701–3732(1985).

    Article  ADS  Google Scholar 

  • Shkuratov, Y. G., Kaydash, V G., and Opanasenko, N.V Iron and titanium abundance and maturity degree distribution on the lunar nearside. Icarus 137, 222–234 (1999).

    Article  ADS  Google Scholar 

  • Shoemaker, E. M. Preliminary analysis of the fine structure of the lunar surface in Mare Cognitum. JPL Tech. Rept. 32-800, 249–337 (1966).

    Google Scholar 

  • Shoemaker, E. M. Asteroid and comet bombardment of the Earth. Annu. Rev. Earth Planet. Sci. 11, 461–494 (1983).

    Article  ADS  Google Scholar 

  • Shoemaker, E. M. Large body impacts through geologic time. In Patterns of change in Earth evolution, (Holland, H. D. and Trendall, A. F., Eds.), Springer, Berlin, 15–40 (1984).

    Chapter  Google Scholar 

  • Shoemaker, E. M. Long-term variations in the impact cratering rate on Earth. Geol. Soc. Lond., Spec. Publ. 140, 7–10 London (1998).

    Article  ADS  Google Scholar 

  • Shoemaker, E. M. and Hackman, R. J. Stratigraphie basis for a lunar time scale. In The Moon (Kopal, Z. and Mikhailov, Z. K., Eds.), Academic Press, London, 289–300 (1962).

    Google Scholar 

  • Shoemaker, E. M. and Shoemaker, C. S. The Proterozoic impact record of Australia. AGSO, J. Austral. Geol. Geophys. 16 (1996).

    Google Scholar 

  • Shoemaker, E. M. and Wolfe, R. F. Mass extinctions, crater ages and comet showers. In The galaxy and the solar system, (Smoluchowski, R., et al., Eds.), Univ. Arizona Press, Tucson, 338–386 (1986).

    Google Scholar 

  • Silver, L. T. U-Th-Pb isotope systems in Apollo 11 and 12 regolithic materials and a possible age for the Copernican impact. Eos, Trans. AGU 52, 7, 534 (1971).

    Google Scholar 

  • Smrekar, S. and Pieters, C. M. Near-infrared spectroscopy of probable impact melt from three large lunar highland craters. Icarus 63, 442–452 (1985).

    Article  ADS  Google Scholar 

  • Strom, R. G. Origin and relative ages of lunar and mercurian intercrater plains. Phys. Earth Planet. Intl. 15, 156–172(1978).

    Article  ADS  Google Scholar 

  • Toon, O. B., Zahnle, K., Turco, R. P., and Covey, C. Environmental perturbations caused by impacts. In Hazards due to comets and asteroids, (Gehrels, T., Ed.), Univ. Arizona Press, Tucson, 791–826 (1994).

    Google Scholar 

  • Wasson, J. T. and Baedecker, P. A. Provenance of Apollo 12 KREEP. Lunar Planet. Sci. 3, 1315–1326 (1972).

    ADS  Google Scholar 

  • Wilhelms, D. E. The geologic history of the Moon, USGS Prof. Pap. 1348, 302 pp. (1987).

    Google Scholar 

  • Wilhelms, D. E., Oberbeck, V R., and Aggarwal, H. R. Size-frequency distributions of primary and sec-ondary lunar impact craters. Proc. Lunar Planet Sci. Conf. 9, 3735–3762 (1978).

    ADS  Google Scholar 

  • Wolfe, E. W, Lucchitta, B. K., Reed, V S., Ulrich, G. E., and Sanchez, A. G. Geology of the Taurus-Littrow valley floor. Proc. Lunar Sci. Conf. 6, 2463–2482 (1975).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grier, J.A., McEwen, A.S. (2001). The Lunar Record of Recent Impact Cratering. In: Peucker-Ehrenbrink, B., Schmitz, B. (eds) Accretion of Extraterrestrial Matter Throughout Earth’s History. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8694-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8694-8_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4668-5

  • Online ISBN: 978-1-4419-8694-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics