Skip to main content

Extraterrestrial Helium in Seafloor Sediments: Identification, Characteristics, and Accretion Rate Over Geologic Time

  • Chapter
Accretion of Extraterrestrial Matter Throughout Earth’s History

Abstract

Almost 40 years after the discovery of extraterrestrial helium in seafloor sediments, renewed attention is being focused on using helium as a proxy for the sedimentary abundance of extraterrestrial debris. Extraterrestrial He is carried to the seafloor by the finest fraction of interplanetary dust and is retained in at least some sediments for hundreds of millions of years. Helium isotope systematics uniquely identify the extraterrestrial component, which is apparently hosted within magnetite and silicate grains. In some sediments 3He is completely derived from this source, in others the extraterrestrial fraction can be computed from the measured 3He/4He ratio. Variations in the sedimentary concentration of extraterrestrial 3He must reflect both changes in sedimentation rate and fluctuations in the accretion rate of 3He from space. When changes in sedimentation rate can be controlled for, variations in extraterrestrial 3He can be related to changes in the accretion rate of IDPs arising from major solar system events including asteroid collisions and enhanced cometary activity. A 3He record in sediments spanning the last 70 Myr provides insights to such events, including the first compelling evidence for the occurrence of a shower of long-period comets, 35 Ma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez, L., Alvarez, W., Asaro, E, and Michel, H. Extraterrestrial cause for the Creatceous-Tertiary extinction. Science 208, 1095–1108 (1980).

    Article  ADS  Google Scholar 

  • Alvarez, W. and Muller, R. A. Evidence from crater ages for periodic impacts on the Earth. Nature 308, 718–720(1984).

    Article  ADS  Google Scholar 

  • Amari, S. and Ozima, M. Extraterrestrial noble gases in deep sea sediments. Geochim. Cosmochim. Acta 52, 1087–1095(1988).

    Article  ADS  Google Scholar 

  • Andrews, J. N. The isotopic composition of radiogenic helium and its use to study groundwater movement in confined aquifers. Chem. Geol. 49, 339–351 (1985).

    Article  Google Scholar 

  • Berger, W. H., Yasuda, M. K., Bickert, T., Wefer, G., and Takayama, T. Quaternary time scale for the Ontong Java Plateau: Milankovitch template for Ocean Drilling Program Site 806. Geology 22, 463–467 (1994).

    Article  ADS  Google Scholar 

  • Bottomley, R., Grieve, R., York, D., and Masaitis, V The age of the Popigai impact event and its relation to events at the Eocene/Oligocene boundary. Nature 388, 365–368 (1997).

    Article  ADS  Google Scholar 

  • Cerling, T. and Craig, H. Geomorphology and in-situ cosmogenic isotopes. Annu. Rev. Earth Planet. Sci. 22,273–317(1993).

    Article  ADS  Google Scholar 

  • Clymer, A. K., Bice, D. M., and Montanari, A. Shocked quartz from the late Eocene: Impact evidence from Massignano, Italy. Geology 24, 483–486 (1996).

    Article  ADS  Google Scholar 

  • Davis, M., Hut, P., and Muller, R. Extinction of species and periodic comet showers. Nature 308, 715–717 (1984).

    Article  ADS  Google Scholar 

  • Dermott, S., Nicholson, P., Burns, X, and Houck, J. Origin of the solar system dust bands discovered by IRAS. Nature 312, 505–509 (1984).

    Article  ADS  Google Scholar 

  • Dermott, S. F., Jayaraman, S., Xu, Y., Gustafson, B. A. S., and Liou, J. C. A circumsolar ring of asteroidal dust in resonant lock with the Earth. Nature 369, 719–723 (1994).

    Article  ADS  Google Scholar 

  • Durda, D. D. and Dermott, S. F. The collisional evolution of the asteroid belt and its contribution to the zodiacal cloud. Icarus 130, 140–164 (1997).

    Article  ADS  Google Scholar 

  • Farley, K. A. Cenozoic variations in the flux of interplanetary dust recorded by 3He in a deep sea sediment. Nature 376, 153–156(1995).

    Article  ADS  Google Scholar 

  • Farley, K. A. and Neroda, E. Noble gases in the Earth’s mantle. Annu. Rev. Earth Planet. Sci. 26, 189–218 (1998).

    Article  ADS  Google Scholar 

  • Farley, K. A. and Patterson, D. B. A 100 ka periodicity in the flux of extraterrestrial 3He to the seafloor. Nature 378, 600–603 (1995).

    Article  ADS  Google Scholar 

  • Farley, K. A., Love, S., and Patterson, D. Atmospheric entry heating and helium retentivity of interplanetary dust particles. Geochim. Cosmochim. Acta 61, 2309–2316 (1997).

    Article  ADS  Google Scholar 

  • Farley, K. A., Montanari, A., Shoemaker, E. M., and Shoemaker, C. S. Geochemical evidence for a comet shower in the Late Eocene. Science 280, 1250–1253 (1998).

    Article  ADS  Google Scholar 

  • Fernandez, J. A. and Ip, W. H. Time-dependent injection of Oort cloud comets into Earth-crossing orbits. Icarus 71, 46–56 (1987).

    Article  ADS  Google Scholar 

  • Flynn, G. J. Atmospheric entry heating: a criterion to distinguish between asteroidal and cometary sources of interplanetary dust. Icarus 77, 287–310 (1989).

    Article  ADS  Google Scholar 

  • Fukumoto, H., Nagao, K., and Matsuda, J. I. Noble gas studies on the host phase of high 3He/4He ratios in deep sea sediments. Geochim. Cosmochim. Acta 50, 2245–2253 (1986).

    Article  ADS  Google Scholar 

  • Gladman, B. I, Migliorini, F, Morbidelli, A., ZappalĂ , V, Michel, P., Cellino, A., FroeschlĂ©, C, Levison, H. F., Bailey, M., Duncan, M. Dynamical lifetimes of objects injected into asteroid belt resonances. Science 277, 197–201 (1997).

    Article  ADS  Google Scholar 

  • Higgins, S. M., Marcantonio, F., Anderson, R. F., Stute, M., and Schlosser P. A global estimate of the Late Quaternary helium-retentive IDP flux determined from 3He/xs230Th ratios in marine sediments. Eos, Trans. AGU 19, F50 (1998).

    Google Scholar 

  • Hiyagon, H. Retention of solar helium and neon in IDPs in deep sea sediments. Science 263, 1257–1259 (1994).

    Article  ADS  Google Scholar 

  • Holeman, J. Sediment yield of major rivers of the world. Water Resources Res. 4, 737–747 (1968).

    Article  ADS  Google Scholar 

  • Huss, G. R. and Lewis, R. S. Presolar diamond, SiC, and graphite in primitive chondrites: Abundances as a function of meteorite class and petrologic type. Geochim. Cosmochim. Acta 59, 115–160(1995).

    Article  ADS  Google Scholar 

  • Hut, P., Alvarez, W., Elder, W. P., Hansen, T., Kauffman, E. G., Keller, G., Shoemaker, E. M., and Weissman, P. R. Comet showers as a cause of mass extinctions. Nature 329, 119–127 (1987).

    Article  ADS  Google Scholar 

  • Imbrie, J., Berger, A., Boyle, E. A., Clemens, S. C, Duffy, A., Howard, W. R., and Kukla, G. On the structure and origin of major glaciation cycles 2. The 100,000 year cycle. Paleoceanography 8, 699–735 (1993).

    Article  ADS  Google Scholar 

  • Koeberl, C, Poag, C. W., Reimold, W. U, and Brandt, D. Impact origin of the Chesapeake Bay structure and the source of the North American tektites. Science 271, 1263–1266 (1996).

    Article  ADS  Google Scholar 

  • Kortenkamp, S. and Dermott, S. Accretion of interplanetary dust particles by the Earth. Icarus 135, 469–495 (1998a).

    Article  ADS  Google Scholar 

  • Kortenkamp, S. and Dermott, S. A 100,000-year periodicity in the accretion rate of interplanetary dust. Science 280, 874–876 (1998b).

    Article  ADS  Google Scholar 

  • Krylov, A. Y., Mamyrin, B. A., Silin, Y. I., and Khabarin, L. V Helium isotopes in ocean sediments. Geochem. Intl. 202–205 (1973).

    Google Scholar 

  • Kurz, M. D. In situ production of terrestrial cosmogenic helium and some applications to geochronology. Geochim. Cosmochim. Acta 50, 2855–2862 (1986).

    Article  ADS  Google Scholar 

  • Kurz, M. D., Kenna, T. C, Lassiter, J. C, and DePaolo, D. J. Helium isotopic evolution of Mauna Kea Volcano: First results from the 1-km drill core. J. Geophys. Res. 101, 11781–11791 (1996).

    Article  ADS  Google Scholar 

  • Kyte, F. T., Leinen, M., Heath, G. R., and Zhou, L. Cenozoic sedimentation history of the central North Pacific: Inferences from the elemental geochemistry of core LL44-GPC3. Geochim. Cosmochim. Acta 57, 1719–1740(1993).

    Article  ADS  Google Scholar 

  • Love, S. G. and Brownlee, D. E. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553 (1993a).

    Article  ADS  Google Scholar 

  • Love, S. G. and Brownlee, D. E. Peak atmospheric entry temperatures of micrometeorites. Meteoritics 29, 69–70 (1993b).

    ADS  Google Scholar 

  • Love, S. G., Joswiak, D. J., and Brownlee, D. E. Densities of stratospheric micrometeorites. Icarus 111, 227–236(1994).

    Article  ADS  Google Scholar 

  • Mamyrin, B. and Tolstikhin, I. Helium isotopes in nature. Elsevier, Amsterdam, 267 pp. (1984).

    Google Scholar 

  • Marcantonio, F., Kumar, N., Stute, M. Anderson, R. F., and Seidl, M. A. Comparative study of accumulation rates derived by Th and He isotope analyses of marine sediments. Earth Planet. Sci. Lett. 133, 549–555 (1995).

    Article  ADS  Google Scholar 

  • Marcantonio, F., Anderson, R. F., Stute, M., Kumar, N., and Schlosser, P. M. Extraterrestrial 3He as a tracer of marine sediment transport and accumulation. Nature 383, 705–707 (1996).

    Article  ADS  Google Scholar 

  • Marcantonio, F., Higgins, S., Anderson, R. F., Stute, M., and Schlosser, P. Terrigenous helium in deep-sea sediments. Geochim. Cosmochim. Acta 62, 1535–1543 (1997).

    Article  ADS  Google Scholar 

  • Marzari, E, Davis, D., and Vanzani, V Collisional evolution of asteroid families. Icarus 113, 168–187 (1995).

    Article  ADS  Google Scholar 

  • Matese, J. J., Whitman, P. G., Innanen, K. A., and Valtonen, M. J. Periodic modulation of the Oort cloud comet flux by the adiabatically changing galactic tide. Icarus 116, 255–268 (1995).

    Article  ADS  Google Scholar 

  • Merrihue, C. Rare gas evidence for cosmic dust in modern Pacific red clay. Annu. N. Y. Acad. Sci. 119, 351–367(1964).

    Article  ADS  Google Scholar 

  • Montanari, A., Asaro, E, Michel, H. V, and Kennett, J. P. Iridium anomalies of Late Eocene age at Massig-nano (Italy), and ODP Site 689B (Maud Rise, Antartic). Palaios 8, 420–437 (1993).

    Article  Google Scholar 

  • Morrison, P. and Pine, X Radiogenic origin of the helium in rocks. Annu. N. Y. Acad. Sci. 62, 71–92 (1958).

    Article  ADS  Google Scholar 

  • Mukhopadhyay, S., Farley, K. A., and Montanari, A. A 35 Myr record of helium in pelagic limestone from Italy: Implications for interplanetary dust accretion from the early Maastinchtian to the middle Eocene. Geochim. Cosmochim. Acta 65, 653–669 (2001).

    Article  ADS  Google Scholar 

  • Muller, R. A. and MacDonald, G. X Glacial cycles and orbital inclination. Nature 377, 107–108 (1995).

    Article  ADS  Google Scholar 

  • Muller, R. A. and MacDonald, G. J. Simultaneous presence of orbital inclination and eccentricity in proxy climate records from Ocean Drilling Program Site 806. Geology 25, 3–6 (1997).

    Article  ADS  Google Scholar 

  • Murray, S. and Renard, A. Rept. Sci. Results Voyage H. M. S. Challenger. Neill and Co., Edinburgh, 214 pp. (1891).

    Google Scholar 

  • Nier, A. O. and Schlutter, D. J. Helium and neon isotopes in stratospheric particles. Meteoritics 25, 263–267 (1990).

    ADS  Google Scholar 

  • Nier, A. O., Schlutter, D. X, and Brownlee, D. E. Helium and neon isotopes in deep Pacific Ocean sediments. Geochim. Cosmochim. Acta 54, 173–182 (1990).

    Article  ADS  Google Scholar 

  • Ozima, M., Takayanagi, M.,Zashu, S., and Amari, S. High 3He/4He ratios in ocean sediments. Nature 311, 449–451 (1984).

    Article  ADS  Google Scholar 

  • Patterson, D. B. and Farley, K. A. Extraterrestrial 3He in seafloor sediments: Evidence for correlated 100 kyr periodicity in the accretion rate of interplanetary dust, orbital parameters, and Quaternary climate. Geochim. Cosmochim. Acta 62, 3669–3682 (1998).

    Article  ADS  Google Scholar 

  • Patterson, D., Farley, K., and Schmitz, B. Preservation of extraterrestrial 3He in a 480 Myr old marine limestone. Earth Planet. Sci. Lett. 163, 315–325 (1998).

    Article  ADS  Google Scholar 

  • Pierrard, O., Robin, E., Rocchia, R., and Montanari, A. Extraterrestrial Ni-rich spinel in upper Eocene sediments from Massignano, Italy. Geology 24, 307–310 (1998).

    Article  ADS  Google Scholar 

  • Rajan, R., Brownlee, D. E., Tomandl, D., Hodge, P. W., Farrar, H., IV, and Britten, R. A. Detection of 4He in stratospheric particles gives evidence of extraterrestrial origin. Nature 267, 133–134 (1977).

    Article  ADS  Google Scholar 

  • Rampino, M. and Stothers, R. Terrestrial mass extinctions, cometary impacts and the Sun’s motion perpendicular to the galactic plane. Nature 308, 709–712 (1984).

    Article  ADS  Google Scholar 

  • Raup, D. and Sepkoski, J. Periodicity of extinctions in the geologic past. Proc. Nat. Acad. Sci. 81, 801–805 (1984).

    Article  ADS  Google Scholar 

  • Schwartz, R. and James, P. Periodic mass extinctions and the Sun’s oscillation about the galactic midplane. Nature 308, 712–713 (1984).

    Article  ADS  Google Scholar 

  • Stuart, F., Harrop, P., Knott, S., and Turner, G. Laser extraction of helium isotopes from Antarctic microm-eteorites: Source of He and implications for the flux of extraterrestrial 3He to Earth. Geochim. Cos-mochim. Acta 63, 2653–2665 (1999).

    Article  ADS  Google Scholar 

  • Takayanagi, M. and Ozima, M. Temporal variation of 3He/4He in deep-sea sediment cores. J. Geophys. Res. 92, 12531–12538 (1987).

    Article  ADS  Google Scholar 

  • Trull, T. W., Kurz, M. D., and Jenkins, W. J. Diffusion of cosmogenic 3He in olivine and quartz: Implications for surface exposure dating. Earth Planet. Sci. Lett. 103, 241–256 (1991).

    Article  ADS  Google Scholar 

  • Weissman, P. R. Terrestrial impactors at geological boundary events: Comets or asteroids? Nature 314, 517–518(1985).

    Article  ADS  Google Scholar 

  • Whitmore, D. and Jackson, A. Are periodic extinctions driven by a distant solar companion? Nature 308, 713–715(1984).

    Article  ADS  Google Scholar 

  • Yabushita, S. Periodicity and decay of craters of the past 600 Myr. Earth, Moon, Planets 58, 57–63 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farley, K.A. (2001). Extraterrestrial Helium in Seafloor Sediments: Identification, Characteristics, and Accretion Rate Over Geologic Time. In: Peucker-Ehrenbrink, B., Schmitz, B. (eds) Accretion of Extraterrestrial Matter Throughout Earth’s History. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8694-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8694-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4668-5

  • Online ISBN: 978-1-4419-8694-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics