Extraterrestrial Helium in Seafloor Sediments: Identification, Characteristics, and Accretion Rate Over Geologic Time

  • Kenneth A. Farley

Abstract

Almost 40 years after the discovery of extraterrestrial helium in seafloor sediments, renewed attention is being focused on using helium as a proxy for the sedimentary abundance of extraterrestrial debris. Extraterrestrial He is carried to the seafloor by the finest fraction of interplanetary dust and is retained in at least some sediments for hundreds of millions of years. Helium isotope systematics uniquely identify the extraterrestrial component, which is apparently hosted within magnetite and silicate grains. In some sediments 3He is completely derived from this source, in others the extraterrestrial fraction can be computed from the measured 3He/4He ratio. Variations in the sedimentary concentration of extraterrestrial 3He must reflect both changes in sedimentation rate and fluctuations in the accretion rate of 3He from space. When changes in sedimentation rate can be controlled for, variations in extraterrestrial 3He can be related to changes in the accretion rate of IDPs arising from major solar system events including asteroid collisions and enhanced cometary activity. A 3He record in sediments spanning the last 70 Myr provides insights to such events, including the first compelling evidence for the occurrence of a shower of long-period comets, 35 Ma.

Keywords

Carbide Silicate Sedimentation Fractionation Cretaceous 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez, L., Alvarez, W., Asaro, E, and Michel, H. Extraterrestrial cause for the Creatceous-Tertiary extinction. Science 208, 1095–1108 (1980).ADSCrossRefGoogle Scholar
  2. Alvarez, W. and Muller, R. A. Evidence from crater ages for periodic impacts on the Earth. Nature 308, 718–720(1984).ADSCrossRefGoogle Scholar
  3. Amari, S. and Ozima, M. Extraterrestrial noble gases in deep sea sediments. Geochim. Cosmochim. Acta 52, 1087–1095(1988).ADSCrossRefGoogle Scholar
  4. Andrews, J. N. The isotopic composition of radiogenic helium and its use to study groundwater movement in confined aquifers. Chem. Geol. 49, 339–351 (1985).CrossRefGoogle Scholar
  5. Berger, W. H., Yasuda, M. K., Bickert, T., Wefer, G., and Takayama, T. Quaternary time scale for the Ontong Java Plateau: Milankovitch template for Ocean Drilling Program Site 806. Geology 22, 463–467 (1994).ADSCrossRefGoogle Scholar
  6. Bottomley, R., Grieve, R., York, D., and Masaitis, V The age of the Popigai impact event and its relation to events at the Eocene/Oligocene boundary. Nature 388, 365–368 (1997).ADSCrossRefGoogle Scholar
  7. Cerling, T. and Craig, H. Geomorphology and in-situ cosmogenic isotopes. Annu. Rev. Earth Planet. Sci. 22,273–317(1993).ADSCrossRefGoogle Scholar
  8. Clymer, A. K., Bice, D. M., and Montanari, A. Shocked quartz from the late Eocene: Impact evidence from Massignano, Italy. Geology 24, 483–486 (1996).ADSCrossRefGoogle Scholar
  9. Davis, M., Hut, P., and Muller, R. Extinction of species and periodic comet showers. Nature 308, 715–717 (1984).ADSCrossRefGoogle Scholar
  10. Dermott, S., Nicholson, P., Burns, X, and Houck, J. Origin of the solar system dust bands discovered by IRAS. Nature 312, 505–509 (1984).ADSCrossRefGoogle Scholar
  11. Dermott, S. F., Jayaraman, S., Xu, Y., Gustafson, B. A. S., and Liou, J. C. A circumsolar ring of asteroidal dust in resonant lock with the Earth. Nature 369, 719–723 (1994).ADSCrossRefGoogle Scholar
  12. Durda, D. D. and Dermott, S. F. The collisional evolution of the asteroid belt and its contribution to the zodiacal cloud. Icarus 130, 140–164 (1997).ADSCrossRefGoogle Scholar
  13. Farley, K. A. Cenozoic variations in the flux of interplanetary dust recorded by 3He in a deep sea sediment. Nature 376, 153–156(1995).ADSCrossRefGoogle Scholar
  14. Farley, K. A. and Neroda, E. Noble gases in the Earth’s mantle. Annu. Rev. Earth Planet. Sci. 26, 189–218 (1998).ADSCrossRefGoogle Scholar
  15. Farley, K. A. and Patterson, D. B. A 100 ka periodicity in the flux of extraterrestrial 3He to the seafloor. Nature 378, 600–603 (1995).ADSCrossRefGoogle Scholar
  16. Farley, K. A., Love, S., and Patterson, D. Atmospheric entry heating and helium retentivity of interplanetary dust particles. Geochim. Cosmochim. Acta 61, 2309–2316 (1997).ADSCrossRefGoogle Scholar
  17. Farley, K. A., Montanari, A., Shoemaker, E. M., and Shoemaker, C. S. Geochemical evidence for a comet shower in the Late Eocene. Science 280, 1250–1253 (1998).ADSCrossRefGoogle Scholar
  18. Fernandez, J. A. and Ip, W. H. Time-dependent injection of Oort cloud comets into Earth-crossing orbits. Icarus 71, 46–56 (1987).ADSCrossRefGoogle Scholar
  19. Flynn, G. J. Atmospheric entry heating: a criterion to distinguish between asteroidal and cometary sources of interplanetary dust. Icarus 77, 287–310 (1989).ADSCrossRefGoogle Scholar
  20. Fukumoto, H., Nagao, K., and Matsuda, J. I. Noble gas studies on the host phase of high 3He/4He ratios in deep sea sediments. Geochim. Cosmochim. Acta 50, 2245–2253 (1986).ADSCrossRefGoogle Scholar
  21. Gladman, B. I, Migliorini, F, Morbidelli, A., Zappalà, V, Michel, P., Cellino, A., Froeschlé, C, Levison, H. F., Bailey, M., Duncan, M. Dynamical lifetimes of objects injected into asteroid belt resonances. Science 277, 197–201 (1997).ADSCrossRefGoogle Scholar
  22. Higgins, S. M., Marcantonio, F., Anderson, R. F., Stute, M., and Schlosser P. A global estimate of the Late Quaternary helium-retentive IDP flux determined from 3He/xs230Th ratios in marine sediments. Eos, Trans. AGU 19, F50 (1998).Google Scholar
  23. Hiyagon, H. Retention of solar helium and neon in IDPs in deep sea sediments. Science 263, 1257–1259 (1994).ADSCrossRefGoogle Scholar
  24. Holeman, J. Sediment yield of major rivers of the world. Water Resources Res. 4, 737–747 (1968).ADSCrossRefGoogle Scholar
  25. Huss, G. R. and Lewis, R. S. Presolar diamond, SiC, and graphite in primitive chondrites: Abundances as a function of meteorite class and petrologic type. Geochim. Cosmochim. Acta 59, 115–160(1995).ADSCrossRefGoogle Scholar
  26. Hut, P., Alvarez, W., Elder, W. P., Hansen, T., Kauffman, E. G., Keller, G., Shoemaker, E. M., and Weissman, P. R. Comet showers as a cause of mass extinctions. Nature 329, 119–127 (1987).ADSCrossRefGoogle Scholar
  27. Imbrie, J., Berger, A., Boyle, E. A., Clemens, S. C, Duffy, A., Howard, W. R., and Kukla, G. On the structure and origin of major glaciation cycles 2. The 100,000 year cycle. Paleoceanography 8, 699–735 (1993).ADSCrossRefGoogle Scholar
  28. Koeberl, C, Poag, C. W., Reimold, W. U, and Brandt, D. Impact origin of the Chesapeake Bay structure and the source of the North American tektites. Science 271, 1263–1266 (1996).ADSCrossRefGoogle Scholar
  29. Kortenkamp, S. and Dermott, S. Accretion of interplanetary dust particles by the Earth. Icarus 135, 469–495 (1998a).ADSCrossRefGoogle Scholar
  30. Kortenkamp, S. and Dermott, S. A 100,000-year periodicity in the accretion rate of interplanetary dust. Science 280, 874–876 (1998b).ADSCrossRefGoogle Scholar
  31. Krylov, A. Y., Mamyrin, B. A., Silin, Y. I., and Khabarin, L. V Helium isotopes in ocean sediments. Geochem. Intl. 202–205 (1973).Google Scholar
  32. Kurz, M. D. In situ production of terrestrial cosmogenic helium and some applications to geochronology. Geochim. Cosmochim. Acta 50, 2855–2862 (1986).ADSCrossRefGoogle Scholar
  33. Kurz, M. D., Kenna, T. C, Lassiter, J. C, and DePaolo, D. J. Helium isotopic evolution of Mauna Kea Volcano: First results from the 1-km drill core. J. Geophys. Res. 101, 11781–11791 (1996).ADSCrossRefGoogle Scholar
  34. Kyte, F. T., Leinen, M., Heath, G. R., and Zhou, L. Cenozoic sedimentation history of the central North Pacific: Inferences from the elemental geochemistry of core LL44-GPC3. Geochim. Cosmochim. Acta 57, 1719–1740(1993).ADSCrossRefGoogle Scholar
  35. Love, S. G. and Brownlee, D. E. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553 (1993a).ADSCrossRefGoogle Scholar
  36. Love, S. G. and Brownlee, D. E. Peak atmospheric entry temperatures of micrometeorites. Meteoritics 29, 69–70 (1993b).ADSGoogle Scholar
  37. Love, S. G., Joswiak, D. J., and Brownlee, D. E. Densities of stratospheric micrometeorites. Icarus 111, 227–236(1994).ADSCrossRefGoogle Scholar
  38. Mamyrin, B. and Tolstikhin, I. Helium isotopes in nature. Elsevier, Amsterdam, 267 pp. (1984).Google Scholar
  39. Marcantonio, F., Kumar, N., Stute, M. Anderson, R. F., and Seidl, M. A. Comparative study of accumulation rates derived by Th and He isotope analyses of marine sediments. Earth Planet. Sci. Lett. 133, 549–555 (1995).ADSCrossRefGoogle Scholar
  40. Marcantonio, F., Anderson, R. F., Stute, M., Kumar, N., and Schlosser, P. M. Extraterrestrial 3He as a tracer of marine sediment transport and accumulation. Nature 383, 705–707 (1996).ADSCrossRefGoogle Scholar
  41. Marcantonio, F., Higgins, S., Anderson, R. F., Stute, M., and Schlosser, P. Terrigenous helium in deep-sea sediments. Geochim. Cosmochim. Acta 62, 1535–1543 (1997).ADSCrossRefGoogle Scholar
  42. Marzari, E, Davis, D., and Vanzani, V Collisional evolution of asteroid families. Icarus 113, 168–187 (1995).ADSCrossRefGoogle Scholar
  43. Matese, J. J., Whitman, P. G., Innanen, K. A., and Valtonen, M. J. Periodic modulation of the Oort cloud comet flux by the adiabatically changing galactic tide. Icarus 116, 255–268 (1995).ADSCrossRefGoogle Scholar
  44. Merrihue, C. Rare gas evidence for cosmic dust in modern Pacific red clay. Annu. N. Y. Acad. Sci. 119, 351–367(1964).ADSCrossRefGoogle Scholar
  45. Montanari, A., Asaro, E, Michel, H. V, and Kennett, J. P. Iridium anomalies of Late Eocene age at Massig-nano (Italy), and ODP Site 689B (Maud Rise, Antartic). Palaios 8, 420–437 (1993).CrossRefGoogle Scholar
  46. Morrison, P. and Pine, X Radiogenic origin of the helium in rocks. Annu. N. Y. Acad. Sci. 62, 71–92 (1958).ADSCrossRefGoogle Scholar
  47. Mukhopadhyay, S., Farley, K. A., and Montanari, A. A 35 Myr record of helium in pelagic limestone from Italy: Implications for interplanetary dust accretion from the early Maastinchtian to the middle Eocene. Geochim. Cosmochim. Acta 65, 653–669 (2001).ADSCrossRefGoogle Scholar
  48. Muller, R. A. and MacDonald, G. X Glacial cycles and orbital inclination. Nature 377, 107–108 (1995).ADSCrossRefGoogle Scholar
  49. Muller, R. A. and MacDonald, G. J. Simultaneous presence of orbital inclination and eccentricity in proxy climate records from Ocean Drilling Program Site 806. Geology 25, 3–6 (1997).ADSCrossRefGoogle Scholar
  50. Murray, S. and Renard, A. Rept. Sci. Results Voyage H. M. S. Challenger. Neill and Co., Edinburgh, 214 pp. (1891).Google Scholar
  51. Nier, A. O. and Schlutter, D. J. Helium and neon isotopes in stratospheric particles. Meteoritics 25, 263–267 (1990).ADSGoogle Scholar
  52. Nier, A. O., Schlutter, D. X, and Brownlee, D. E. Helium and neon isotopes in deep Pacific Ocean sediments. Geochim. Cosmochim. Acta 54, 173–182 (1990).ADSCrossRefGoogle Scholar
  53. Ozima, M., Takayanagi, M.,Zashu, S., and Amari, S. High 3He/4He ratios in ocean sediments. Nature 311, 449–451 (1984).ADSCrossRefGoogle Scholar
  54. Patterson, D. B. and Farley, K. A. Extraterrestrial 3He in seafloor sediments: Evidence for correlated 100 kyr periodicity in the accretion rate of interplanetary dust, orbital parameters, and Quaternary climate. Geochim. Cosmochim. Acta 62, 3669–3682 (1998).ADSCrossRefGoogle Scholar
  55. Patterson, D., Farley, K., and Schmitz, B. Preservation of extraterrestrial 3He in a 480 Myr old marine limestone. Earth Planet. Sci. Lett. 163, 315–325 (1998).ADSCrossRefGoogle Scholar
  56. Pierrard, O., Robin, E., Rocchia, R., and Montanari, A. Extraterrestrial Ni-rich spinel in upper Eocene sediments from Massignano, Italy. Geology 24, 307–310 (1998).ADSCrossRefGoogle Scholar
  57. Rajan, R., Brownlee, D. E., Tomandl, D., Hodge, P. W., Farrar, H., IV, and Britten, R. A. Detection of 4He in stratospheric particles gives evidence of extraterrestrial origin. Nature 267, 133–134 (1977).ADSCrossRefGoogle Scholar
  58. Rampino, M. and Stothers, R. Terrestrial mass extinctions, cometary impacts and the Sun’s motion perpendicular to the galactic plane. Nature 308, 709–712 (1984).ADSCrossRefGoogle Scholar
  59. Raup, D. and Sepkoski, J. Periodicity of extinctions in the geologic past. Proc. Nat. Acad. Sci. 81, 801–805 (1984).ADSCrossRefGoogle Scholar
  60. Schwartz, R. and James, P. Periodic mass extinctions and the Sun’s oscillation about the galactic midplane. Nature 308, 712–713 (1984).ADSCrossRefGoogle Scholar
  61. Stuart, F., Harrop, P., Knott, S., and Turner, G. Laser extraction of helium isotopes from Antarctic microm-eteorites: Source of He and implications for the flux of extraterrestrial 3He to Earth. Geochim. Cos-mochim. Acta 63, 2653–2665 (1999).ADSCrossRefGoogle Scholar
  62. Takayanagi, M. and Ozima, M. Temporal variation of 3He/4He in deep-sea sediment cores. J. Geophys. Res. 92, 12531–12538 (1987).ADSCrossRefGoogle Scholar
  63. Trull, T. W., Kurz, M. D., and Jenkins, W. J. Diffusion of cosmogenic 3He in olivine and quartz: Implications for surface exposure dating. Earth Planet. Sci. Lett. 103, 241–256 (1991).ADSCrossRefGoogle Scholar
  64. Weissman, P. R. Terrestrial impactors at geological boundary events: Comets or asteroids? Nature 314, 517–518(1985).ADSCrossRefGoogle Scholar
  65. Whitmore, D. and Jackson, A. Are periodic extinctions driven by a distant solar companion? Nature 308, 713–715(1984).ADSCrossRefGoogle Scholar
  66. Yabushita, S. Periodicity and decay of craters of the past 600 Myr. Earth, Moon, Planets 58, 57–63 (1992).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Kenneth A. Farley
    • 1
  1. 1.Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations