Advertisement

Liquid-Phase Sintering of the Systems With Interacting Components

  • Arnold Savitskii

Abstract

The existing conceptions on the problem of liquid phase sintering fail to give answers to many questions like the following:
  • why do compacts during liquid-phase sintering grow at first and then shrink, but not vice versa;

  • why is the amount of compact growth the greater, the coarser the solid-phase particles;

  • why no shrinkage is observed, even if temporary, when the content of a liquid additive does not exceed the solubility limit in the solid phase;

  • why does the amount of swelling increase only within the concentration range of the solidphase existence with increasing the additive content in the mixture;

  • why is the heat release observed at the first, or growth, stage, but not during shrinkage;

  • why is the growth rate in the systems with intermetallic compounds much higher than in those with solid solutions only.

Keywords

Diffusion Zone Alloy Formation Contact Melting Diffusion Interaction Liquid Metal Embrittlement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. P. Savitskii, Liquid Phase Sintering of the Systems with Interacting Components, Academy of Sciences, Tomsk (1993).Google Scholar
  2. 2.
    O.I. Tikhomirova, L.P. Ruzinov, M.V. Pikunov, et al. Study of mutual diffusion in Ga-Cu system, Fizika metallov i metallovedenie, 29, 4:796 (1970), in Russian.Google Scholar
  3. 3.
    O.I. Tikhomirova and O.A. Zakstel’skaya, Peculiarities of phase formation while contacting liquid gallium and indium alloys with copper, Adgeziya rasplavov i paikamaterialov,: Naukova dumka, Kiev, 12:46 (1984), in Russian.Google Scholar
  4. 4.
    W.A. Kaysser and G. Petzow, Present state of liquid phase sintering, Powder met. 28, 3:145 (1985).Google Scholar
  5. 5.
    V.I. Nikitin. Physical-chemical phenomena in effecting liquid metals on the solid, Atomizdat, Moscow (1967), in Russian.Google Scholar
  6. 6.
    L.K. Savitskaya and A.P. Savitskii, Thermodynamics and mechanism of contact melting, in: Poverchnostnye Yavleniya v Rasplavakh i Voznikayushchikh iz nikh Tverdykh Fazakh, Kabardino-Balkarskoe knizhnoe izdatel’stvo, Nal’chik (1965), in Russian.Google Scholar
  7. 7.
    B. Chalmers and J.M. Lommel, The isothermal transfer from solid to liquid in metal systems, Trans. AIME, 215, 6:499 (1959).Google Scholar
  8. 8.
    I.P. Dobrovolskii, B.A. Kartashkin, et al. On nature and mechanism of contact melting, Fizika i khimiya obrabotki materialov, 2:36 (1972), in Russian.Google Scholar
  9. 9.
    G.A. Sakhno and I.M. Selezneva, Composition and temperature of liquid phase formation during contact melting, in: Fizicheskaya Khimiya Poverkhnosti Resplavov, Mitsniereba, Tbilisi (1977), in Russian.Google Scholar
  10. 10.
    G.A. Pribytkov and V.I. Itin, Thermal effects during interaction of solid metal with metallic melt, Adgeziya rasplavov i paika materialov, Naukova dumka, Kiev, 10:36 (1982), in Russian.Google Scholar
  11. 11.
    S.P. Savintsev and A.A. Akhkubekov, Application of contact melting to determine the mutual diffusion coefficient in melts of binary systems, Zavodskaya laboratoriya, 3:30 (1981), in Russian.Google Scholar
  12. 12.
    V.S. Novosadov and B.A. Vershok, Calculation of non-stationary kinetics of the contact melting process, Fizika i khimiya obrabotki materialov, 2:61 (1974), in Russian.Google Scholar
  13. 13.
    D.E. Temkin, Kinetics of the contact melting process under stationary regime, Izvestiya AN SSSR, Metally, 3:219 (1967), in Russian.Google Scholar
  14. 14.
    J.E. Elliott, Growth of sintered metal compacts, Metallurgia, 56, No 1 (1959), 17–27.Google Scholar
  15. 15.
    G. Bockstiegel, Erscheinungsbild und Ursachen von Volumenanderunge beim Sintern von Presslingen aus Eisen-Kupfer-und Eisen-Kupfer-Graphit-Pulvermischungen, Stahl und Eisen, 79, 17:1187(1959).Google Scholar
  16. 16.
    G. Bockstiegel, Dimensional changes during sintering of iron-copper powder mixes and means to reduce them, Metallurgie, 3, 4:67 (1962).Google Scholar
  17. 17.
    L. Levin, A. Stern and S.F. Dirnfeld, Homogenisation during sintering in a system with limited solubility of components, Z. Metallkunde, 71, 9:621 (1980).Google Scholar
  18. 18.
    A.P. Savitskii and L.K. Savitskaya, Role of contact melting in adsorption decrease of metal plasticity, in: Poverkhnostnye Yavleniya v Rasplavakh i Voznikayushchikh iz nikn Tverdikh Fazakh, Kabardino-Balkarskoe izdatel’stvo, Nal’chik, (1965), in Russian.Google Scholar
  19. 19.
    A.P. Savitskii and L.K. Savitskaya, New data on embrittlement of metals by liquid melts, Doklady ANSSSR, 174, 5:1072 (1967), in Russian.Google Scholar
  20. 20.
    A.P. Savitskii, T.V. Loginova and L.K. Savitskaya, Stimulation and suppression of liquid metal embrittlement by alloying, Fizika i khimiya obrabotki materialov, 3:110 (1973), in Russian.Google Scholar
  21. 21.
    Y.E. Gegusin. Diffusion Zone, Nauka: Moscow, (1979), in Russian.Google Scholar
  22. 22.
    V.V. Skorokhod, S.M. Solonin, et al. Investigation of alloy formation during liquid-phase sintering of powder compositions on tungsten base, Poroshkovaya metallurgiya, 1:14 (1979), in Russian.Google Scholar
  23. 23.
    H. Danninger, Pore formation during sintering of Fe-Cu and its effects on mechanical properties, Powder Met. Inter., 19, 1:19 (1987).Google Scholar
  24. 24.
    K. May, Schwindung und Quellung beim Sintern von Metallen, Archiv fur Metallkunde, 2, 5:154(1948).Google Scholar
  25. 25.
    A.P. Savitskii, L.S. Martsunova, and M. A. Emeliyanova, Changes in compact porosity as a result of diffusion phase interaction during liquid-phase sintering, Poroshkovaya metallurgiya, 1:6(1981), in Russian.Google Scholar
  26. 26.
    J. Gurland and J.T. Norton, Role of the binder phase in cemented tungsten carbide-cobalt alloys, Jour. Metals, 4, 10:1051 (1952).Google Scholar
  27. 27.
    M. Hofmann-Amtenbrink, W.A. Kaysser and G. Petzow, Grain boundary migration in recrystallized Mo foils in the presence of Ni, Jour. de physique, 46, 4:545 (1985).CrossRefGoogle Scholar
  28. 28.
    A.P. Savitskii and N.N. Burtsev, Dilatometric investigations of Ti-Al compacts growth during liquid-phase sintering, Poroshkovaya metallurgiya, 3:24 (1983), in Russian.Google Scholar
  29. 29.
    A.P. Savitskii, E.S. Kim and L.S. Martsunova, Compact shrinkage during liquid-phase sintering, Poroshkovaya metallurgiya, 9:9 (1980), in Russian.Google Scholar
  30. 30.
    G. Petzow, W.A. Kaysser and M. Amtenbrink, Liquid phase and activated sintering, Sintering — theory and practice. Material science monographs, 14:27 (1982).Google Scholar
  31. 31.
    W.A. Kaysser and G. Petzow, Present state of liquid phase sintering, Powder met. 28, 3:145 (1985).Google Scholar
  32. 32.
    A.P. Savitskii, G.N. Romanov, and L.S. Martsunova, Deformation of Al-Cu powder bodies during liquid-phase sintering, Poroshkovaya metallurgiya, 8:39 (1985), in Russian.Google Scholar
  33. 33.
    R.M. German and K.A. D’Angelo, Enhanced sintering treatments for ferrous powders, Inter. Metals Reviews, 29, 4:249 (1984).Google Scholar
  34. 34.
    R.M. German, B.H. Rubin, Enhanced sintering through second phase addition, Powder metallurgy, 28, 1:7(1985).Google Scholar
  35. 35.
    A.P. Savitskii, L.S. Martsunova, V.G. Gopienko, et al. Prevention of compact growth during sintering of complex systems, Poroshkovaya metallurgiya, 8:30 (1981), in Russian.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Arnold Savitskii
    • 1
  1. 1.Institute of Strength Physics and Materials ScienceTomskRussia

Personalised recommendations