Skip to main content

Aerosol Synthesis of Nanostructured Materials

  • Chapter
Advanced Science and Technology of Sintering

Abstract

The scientifical and technological interest in nanostructured materials is currently tremendously increasing. 1–3 The basis of this interest is related to the extraordinary properties that powders and materials at the nanometer or subnanometer scale exhibit. 4-6 Such properties result from their structure that distinguish them from conventional polycrystalline materials by the size of the crystallites that compose them as well as a large volume fraction of interface and grain boundaries. The nanostructured materials research efforts emphasize the synthesis routes for the generation of ultrafine powders with control over particle size, shape, composition and morphology as the key issue in advanced materials synthesis.1 The aerosol synthesis route enables the generation of new nanoparticles and nanomaterials either as coatings or powders as single, complex metal oxides, nonoxides or metals by adjusting the precursor chemistry.7 The starting-point of the aerosol synthesis of nanostructured materials is the generation of discrete droplets of the starting solution (aerosol) and control over aerosol decomposition in a high temperature tubular flow reactor.8.9 The successive processes of solvent evaporation, drying, solute precipitation and decomposition proceed through heterogeneous gas-liquid/solid reactions in dispersed system ensuring high surface reaction and limiting any compositional segregation to the droplet level.9 By controlling the precursor solution chemistry, processing parameters and mechanisms of particle formation through either the surface or volume precipitation of droplets it is possible to tailor the powder size, morphology, chemical and phase compositions. The condition for aerosol generation ultrasonically with special emphasis on the various particle morphology synthesis is reviewed in this paper. The importance to model the phenomenon of mass and heat transfer occurring during the evaporation/drying stage is discussed from the viewpoint of the parameters leading to a certain particle morphology. It is demonstrated that aerosol synthesis of nanostructures can be realized in a controlled manner by adjusting the aerosol droplet size and precursor chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Gleiter, Materials with ultrafine microstructures: retrospectives and perspectives, Nanostr. Mater. 1:1 (1992).

    Article  CAS  Google Scholar 

  2. R.W. Siegel, Nanostructured materials-mind over matter, Nanostr. Mater. 3:121 (1994).

    Article  Google Scholar 

  3. M.N. Rittner and T. Abraham, The nanostructured materials industry, Am.Ceram.Soc.Bull. 76(6): 51 (1997).

    CAS  Google Scholar 

  4. L.E. Brus, Structure and electronic states of quantum semiconductor crystallites, Nanostr. mater. 1:71 (1992).

    Article  CAS  Google Scholar 

  5. R.D. Shull and L.H. Benett, Nanocomposite magnetic materials, Nanostr. mater. 1:83 (1992). 83-88

    Article  CAS  Google Scholar 

  6. R. Riedel, H-J. Kleebe, H. Schonfelder and F. Aldinger, A covalent micro/nano composite resistant to high-temperature oxidation, Nature 374:526(1995).

    Article  CAS  Google Scholar 

  7. A. Gurav, T. Kodas, T. Pluym and Y. Xiong, Aerosol processing of materials, Aerosol Sci.Techn. 19: 411 (1993).

    Article  CAS  Google Scholar 

  8. G. L. Messing, S.-C. Zhang and G. V. Jayanthi, Ceramic powder synthesis by spray pyrolysis, J.Am.Ceram. Soc. 76(11): 2707 (1993).

    Article  CAS  Google Scholar 

  9. O. Milošević and M.M. Ristić, Spray pyrolysis as an advanced powder metallurgy method, in: Proceedings of the International Conference on Powder Metallurgy, RoPM 96, G. Arghir ed., Editura U.T.Pres, Cluj-Napoca, Romania (1996).

    Google Scholar 

  10. H. Hahn and R.S. Averback, High temperature mechanical properties of nanostructured ceramics, Nanostructured mater. 1: 95 (1992).

    Article  CAS  Google Scholar 

  11. R. Wiesendanger, Recent advances in nanostructural investigations and modifications of solid surfaces by scanning probe methods, Japan J. Appl. Phys. 1, 34 (6B): 3388 (1995)

    Article  Google Scholar 

  12. V. Provenzano, N.P. Louat, M.A. Imam and K. Sadananda, Ultrafine superstrength materials, Nanostructured mater 1:89 (1992).

    Article  CAS  Google Scholar 

  13. H.E. Schaefer, R. Wurschum, T. Gessmann, G. Stockl, P. Scharwaechter, W. Frank, R.Z. Valiev, H. J. Fecht and C. Moelle, Diffusion and free volumes in nanocrystalline Pd, Nanostr. Mater. 6:869 (1995).

    Article  Google Scholar 

  14. N. Wang, Z. Wang, K.T. Aust and U. Erb, Effect of grain size on mechanical properties of nanocrystalline materials, Acta. Metall. Mater. 43(2):519 (1995).

    Article  CAS  Google Scholar 

  15. J.C. Parker and R.W. Siegel, Optical determination of the oxygen stoichiometry of nanophase metal-oxide materials, Nanostr. Mater. 1: 53 (1992).

    Article  CAS  Google Scholar 

  16. P. Mateazzi, G.L. C and A. Mocellin, Ceram. Intern. 23: 39 (1997).

    Article  Google Scholar 

  17. Ph. Colomban, Gel technology in ceramics, Ceram. Intern. 15:23 (1989).

    Article  Google Scholar 

  18. R.C. Flagan and M.M. Lunden, Particle structure control in nanoparticle synthesis from the vapor phase, Mat.Sci.Eng. A-Structural Materials Properties, Microstructure and Processing, 204(1-2):113 (1995).

    Article  Google Scholar 

  19. B. J. Ingebrethsen, E. Matijević and R.E. Partch, Preparation of uniform colloidal dispersions by chemical reactions in aerosols, J.Coll. Interf. Sci. 95(1):228 (1983).

    Article  CAS  Google Scholar 

  20. O. Milošević, V. Gagić, J. Vodnik, A. Mitrović, Lj. Karanovic, B. Stojanović and Lj. ŽIvković, Synthesis and deposition of ZnO based particles by aerosol spray pyrolysis, Thin Solid Films 296:44 (1997).

    Article  Google Scholar 

  21. M. Langlet and J.C. Joubert, The pyrosol process or the pyrolysis of an ultrasonically generated aerosol, in: Chemistry of Advanced Materials, C.N.R. Rao ed., Blackwell scientific Publications, (1992).

    Google Scholar 

  22. T.C. Pluym, Q.H. Powell, A.S. Gurav, T.L. Ward and T.T. Kodas, Solid silver particles production by spray pyrolysis, J.Aerosol Sci. 24(3):383 (1993).

    Article  CAS  Google Scholar 

  23. T. Gonzales-Carreno, M.P. Morales, M. Gracia and C.J. Serna, Preparation of uniform γ-Fe2O3 particles with nanometer size by spray pyrolysis, Mater.Lett. 18: 151 (1993).

    Article  Google Scholar 

  24. S-Y. Cho, J-H. Lee and S-J. Park, Preparation of spherical SnO2 powders by ultrasonic spray pyrolysis, J.Am.Ceram.Soc. 76(3): 777 (1993).

    Article  Google Scholar 

  25. T. Fukui, T. Oobuchi, Y. Ikuhara, S. Ohara and K. Kodera, Synthesis of (La,Sr)MnO3 —YSZ composite particles by spray pyrolysis, J.Am.Ceram.Soc. 80(1):261 (1997)

    Article  CAS  Google Scholar 

  26. Y. Chang, S.B. Park and Y.W. Kang, Preparation of high surface area nanophase particles by low pressure spray pyrolysis, Nanostr. Mater. 5:777 (1995).

    Article  Google Scholar 

  27. Q. Li, C.M. Sorensen, K.J. Klabunde and G.C. Hadjipanayis, Aerosol spray pyrolysis synthesis of magnetic manganese ferrite particles, Aerosol Sci. Techn. 19:453 (1993).

    Article  CAS  Google Scholar 

  28. Y. Senzaki, J. Caruso, M.J. Hampden-Smith, T.T. Kodas and L.M. Wang, Preparation of strontium ferrite particles by spray pyrolysis, J. Amer.Ceram.Soc. 78(11):2973 (1995).

    Article  CAS  Google Scholar 

  29. U. Schmatz, G. Delabouglise and M. Labeau, Electrical and microstructural studies of SnO2 ceramics obtained by tin sulfate pyrolysis, J.Electrochem.Soc. 141(11):3254 (1994).

    Article  CAS  Google Scholar 

  30. G.V. Jayanthi, S.C. Zhang and G.L. Messing, Modeling of solid particle formation during solution aerosol thermolysis, Aerosol Sei. Techn. 19:478 (1993).

    Article  CAS  Google Scholar 

  31. Y. Xiong and T.T. Kodas, Droplet evaporation and solute precipitation during spray pyrolysis, J.Aerosol Sci. 24(7):893 (1993).

    Article  CAS  Google Scholar 

  32. O. Miloše vić and V. Gagic, Powder synthesis by the spray pyrolysis method: particle morphology as a function of aerosol droplet size and aerosol droplet number density, Sci.Sint. 28:71 (1996).

    Google Scholar 

  33. N. Nikolić, L. Mančić and O. Milošević, The influence of aerosol droplet number density on aerosol droplet coalescence in powders synthesized by the spray pyrolysis method, Sci.Sint. 29(3):171 (1997)

    Google Scholar 

  34. L. Mančić and O. Milošević, The influence of droplet coalescence on particle morphology of powders derived by aerosol reactions, J.Minning Metall. 34(1-2)B:37 (1998).

    Google Scholar 

  35. P. Odier, B. Dubois, C. Clinard, H. Stroumbos, and Ph. Monod, Processing of ceramic powders by the spray pyrolysis method; influence of the precursors, examples of zirconia and YBa 2Cu3 O7, in: Ceramic Trans — Ceramic Powder Science III, G.L. Messing, S. Hirano, H. Hausner ed., American Ceramic Society, Westerville, OH, (1990).

    Google Scholar 

  36. O. Milošević, M. Mirković and D. Uskoković, Characteristics and formation mechanism of BaTiO3 powders prepared by twin-fluid and ultrasonic spray-pyrolysis method, J. Am. Ceram. Soc. 79(6): 1720(1996).

    Article  Google Scholar 

  37. Y. Xiong, S.W. Lyong and T.T. Kodas, Volatile metal oxide evaporation during aerosol decomposition, J.Am.Ceram.Soc. 78(9): 2490 (1995).

    Article  CAS  Google Scholar 

  38. T.T. Kodas, Generation of complex metal oxides by aerosol processes: superconducting ceramic particles and films, Angew. Chem. Adv. Mater. 101(6):814 (1989).

    Article  CAS  Google Scholar 

  39. M. Labeau, B. Gautheron, F. Cellier, M. Vallet-Regi, E. Garcia and M. Gonzales Calbet, Pt nanoparticles dispersed on SnO2 thin films: a microstructural study, J.Solid State Chem. 102:434 (1993).

    Article  CAS  Google Scholar 

  40. M. Aizawa, K. Itanani, F.S. Howell, A. Kishioka and M. Kinoshita, Formation of porous calcium phosphate films on partially stabilized zirconia substrates by the spray pyrolysis technique, J.Mater.Sci. 30:4936 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Milošević, O.B. (1999). Aerosol Synthesis of Nanostructured Materials. In: Stojanović, B.D., Skorokhod, V.V., Nikolić, M.V. (eds) Advanced Science and Technology of Sintering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8666-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8666-5_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4661-6

  • Online ISBN: 978-1-4419-8666-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics