Oxidant-Regulated Gene Expression in Inflammatory Lung Disease

  • Linda D. Martin
  • Thomas M. Krunkosky
  • Judith A. Voynow
  • Kenneth B. Adler
Part of the NATO ASI Series book series (NSSA, volume 297)


Acute respiratory distress syndrome (ARDS) is characterized by severe hypoxemia, diffuse pulmonary infiltrates and poor lung compliance in the absence of left heart failure1,2. Early pathogenic changes include pulmonary neutrophil sequestration and intravascular fibrin-platelet aggregates3,5. Subsequent injury to the alveolar-capillary barrier leads to increased pulmonary vascular permeability causing progressive lung inflammation and pulmonary edema4. Persistent inflammation frequently leads to fibrosis.


Tumor Necrosis Factor Alpha Acute Respiratory Distress Syndrome Airway Epithelial Cell Xanthine Oxidase Activity Normal Human Bronchial Epithelial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Fulkerson, N. Maclntyre, J. Stamler, and J. Crapo, Pathogenesis and treatment of the adult respiratory distress syndrome, Arch Intern Med. 156:29 (1996).PubMedCrossRefGoogle Scholar
  2. 2.
    S. Watling and J. Yanos, Acute respiratory distress syndrome, Ann Pharmacother. 29:1002 (1995).PubMedGoogle Scholar
  3. 3.
    M. Lamy, R. Fallat, E. Koeniger, H.P. Dietrich, J.L. Ratliff, R.C. Eberhart, H.J. Tucker, and J.D. Hill, Pathologic features and mechanisms of hypoxemia in adult respiratory distress syndrome, Am Rev Respir Dis. 114:267 (1976).Google Scholar
  4. 4.
    M. Bachofen and E. Weibel, Alterations of the gas exchange apparatus in adult respiratory insufficiency associated with septicemia, Am Rev Respir Dis. 116:589 (1977).PubMedGoogle Scholar
  5. 5.
    N. Ratliff, J. Wilson, F. Mikat, D. Hack, and T. Graham, The lung in hemorrhagic shock. IV: the role of the polymorphonuclear leukocyte, Am J Pathol. 65:325 (1971).PubMedGoogle Scholar
  6. 6.
    M. Mulligan, J. Varani, M.K. Dame, C.L. Lane, C.W. Smith, D.C. Anderson, and P.A. Ward, Role of endothelial-leukocyte adhesion molecule (ELAM-1) in neutrophil-mediated lung injury in rats, J Clin Invest. 88:1396 (1991).PubMedCrossRefGoogle Scholar
  7. 7.
    P. Eichacker, A. Farese, W.D. Hoffman, S.M. Banks, T. Monginis, S. Richmond, G.C. Kuo, T.J. Macvittie, and C. Natanson, Leukocyte CD1 IBJ18 antigen-directed monoclonal antibody improves early survival and decreases hypoxemia in dogs challenged with tumor necrosis factor, Am Rev Respir Dis. 145:1023 (1992).PubMedGoogle Scholar
  8. 8.
    I. Engelberts, S. Samyo, J. Leeuwenberg, C. van der Linden, and W. Buurman, A role for ELAM-1 in the pathogenesis of MOF during septic shock, J Surg Res. 53:136 (1992).PubMedCrossRefGoogle Scholar
  9. 9.
    Y. Sibille and H. Reynolds, Macrophages and polymorphonuclear neutrophils in lung defense and injury, Am Rev Respir Dis. 141: 471 (1990).PubMedGoogle Scholar
  10. 10.
    C. Dinarello, J. Gelfand, and S. Wolff, Anticytokine strategies in the treatment of the systemic inflammatory response syndrome, JAMA. 269: 1829 (1993).PubMedCrossRefGoogle Scholar
  11. 11.
    U.S. Chollet-Martin, P. Montravers, C. Gilbert, C. Elbim, J.M. Desmonts, J.V. Fagon, and M.A. Gougerot-Pocidalo, Subpopulation of hyperresponsive polymorphonuclear neutrophils in patients with adult respiratory distress syndrome, Am Rev Respir Dis. 146:990 (1992).PubMedGoogle Scholar
  12. 12.
    S. Chollet-Martin, B. Jourdain, C. Gibert, C. Elbim, J. Chastre, and M. Gougerot-Pocidalo, Interactions between neutrophils and cytokines in blood and alveolar spaces during ARDS, Am J Respir Crit Care Med. 154:594 (1996).PubMedGoogle Scholar
  13. 13.
    V. Vallyathan, X. Shi, N. Dalai, W. Irr, and V. Castranova, Generation of free radicals from freshly fractured silica dust, Annu Rev Respir Dis. 18:1213 (1988).Google Scholar
  14. 14.
    A. Brody, Asbestos-induced lung disease, Environ Health Perspect. 100:21 (1993).PubMedGoogle Scholar
  15. 15.
    R. Pritchard, A. Ghio, J. Lehmann, D.W. Winsett, J.S. Tepper, P. Park, M.I. Gilmour, K.L. Dreher, and D.L. Costa, Oxidant generation and lung injury after particulate air pollutant exposure increase with the concentration of associated metals, Inhalation Toxicol. 8:457 (1996).CrossRefGoogle Scholar
  16. 16.
    C. Cross and B. Halliwell. Biological consequences of general environmental contaminants, in: The Lung. Scientific Foundations, R. Crystal and J. West, eds., Raven Press, New York (1991).Google Scholar
  17. 17.
    R. Bell, J. Coalson, J. Smith, and W. Johanson, Multiple organ system failure and infection in the adult respiratory distress syndrome, Am Intern Med. 99:293 (1983).Google Scholar
  18. 18.
    Y. Shoji, Y. Uedono, H. Ishikura, N. Takeyama, and T. Tanaka, DNA damage induced by tumour necrosis factor-alpha in L929 cells is mediated by mitochondrial oxygen radical formation, Immunology. 84:543 (1995).PubMedGoogle Scholar
  19. 19.
    I. Rahman, X. Li, K. Donaldson, D. Harrison, and W. MacNee, Glutathione homeostasis in alveolar epithelial cells in vitro and lung in vivo under oxidative stress, Am J Physiol. 269:L285 (1995).PubMedGoogle Scholar
  20. 20.
    K. Schulze-Osthoff, R. Beyaert, V. Vandevoorde, G. Haegeman, and W. Fiers, Depletion of the mitochondrial electron transport abrogates the cytotoxic and geneinductive effects of TNF, EMBO J. 12:3095 (1993).PubMedGoogle Scholar
  21. 21.
    A. Kooji, K. Bosch, W. Frederks, and C.V. Noorden, High levels of xanthine oxidoreductase in rat endothelial, epithelial and connective tissue cells, Virchows Arch B Cell Pathol. 62:143 (1992).CrossRefGoogle Scholar
  22. 22.
    K. Pfeffer, T. Huecksteadt, and J. Hoidal, Xanthine dehydrogenase and xanthine oxidase activity and gene expression in renal epithelial cells: cytokine and steroid regulation, J Immunol. 153:1789 (1994).PubMedGoogle Scholar
  23. 23.
    C. Grum, R. Ragsdale, L. Ketai, and R. Simon, Plasma xanthine oxidase activity in patients with adult respiratory distress syndrome, J Crit Care. 2:22 (1987).CrossRefGoogle Scholar
  24. 24.
    R. Simon, P. DeHart, and D. Nadeau, Resistance of rat pulmonary alveolar epithelial cells to neutrophil-and oxidant-induced injury, Am J Respir Cell Mol Biol. 1:221 (1989).PubMedGoogle Scholar
  25. 25.
    P. Engstrom, L. Easterling, R. Baker, and S. Matalon, Mechanisms of extracellular hydrogen peroxide clearance by alveolar type II pneumocytes, J Appl Physiol. 69:2078 (1990).PubMedGoogle Scholar
  26. 26.
    J. Heffner, S. Katz, P. Halushka, and J. Cook, Human platelets attenuate oxidant injury in isolated rabbit lungs, J Appl Physiol. 65:1258 (1988).PubMedGoogle Scholar
  27. 27.
    B.A. Freeman and J.D. Crapo, Biology of disease: free radical and tissue injury, Lab Invest 47:412 (1982).PubMedGoogle Scholar
  28. 28.
    H. Hassan and J. Scandolios, Superoxide dismutases in aerobic organisms, in: Stress Responses in Plants: Adaptation and Acclimation Mechanisms, Wiley-Liss, New York (1990).Google Scholar
  29. 29.
    G. Wong and D. Goeddel, Induction of manganese superoxide dismutase by tumor necrosis factor: possible protective mechanisms, Science. 242:941 (1988).PubMedCrossRefGoogle Scholar
  30. 30.
    G. Visner, W. Dougall, J. Wilson, I. Burr, and H. Nick, Regulation of manganese superoxide dismutase by lipopolysaccharide, interleukin-1 and tumor necrosis factor. Role in the acute inflammatory responses, J Biol Chem. 265:2856 (1990).PubMedGoogle Scholar
  31. 31.
    M. Ono, H. Kohda, T. Kawaguchi, M. Ohhira, C. Sekiya, M. Naomiki, A. Takeyasu, and N. Taniguchi, Induction of Mn-superoxide dismutase by tumor necrosis factor, interleukin-1 and interleukin-6 in human heptoma cells, Biochem Biophys Res Commun. 182:1100 (1992).PubMedCrossRefGoogle Scholar
  32. 32.
    Y. Janssen, J. Marsh, K. Driscoll, P. Borm, G. Oberdorster, and B. Mossman, Increased expression of manganese-containing superoxide dismutase in rat lungs after inhalation of inflammatory and fibrogenic minerals, Free Radical Biology & Medicine. 16:315 (1994).CrossRefGoogle Scholar
  33. 33.
    G. Wong, J. Elwell, L. Oberley, and D. Goeddel, Manganese superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor, Cell. 58:923 (1989).PubMedCrossRefGoogle Scholar
  34. 34.
    L. Smith, M. Houston, and J. Anderson, Increased levels of glutathione in bronchoalveolar lavage fluid from patients with asthma, Am Rev Respir Dis. 147:1461 (1993).PubMedGoogle Scholar
  35. 35.
    C. Powell, A. Nash, H. Powers, and R. Primhak, Antioxidant status in asthma, Pediatric Pulmonology. 18:34 (1994).PubMedCrossRefGoogle Scholar
  36. 36.
    G. Burton and K. Ingold, Mechanisms of antioxidant action: preventive and chainbreaking antioxidants, in: CRC Handbook of Free Radicals and Antioxidants in Biomedicine, II, A, Quintanilha, ed., CRC Press, Boca Raton, FL (1989).Google Scholar
  37. 37.
    B. Ames, R. Cathcart, E. Schwiers, and P. Hochstein, Uric acid provides antioxidant defense in humans against oxidant and radical caused aging and cancer: a hypothesis, Proc Natl Acad Sci, USA. 78:6842 (1981).CrossRefGoogle Scholar
  38. 38.
    K. Davies and A. Seranian, Uric acid-iron ion complexes, Biochem J. 235:747 (1986).PubMedGoogle Scholar
  39. 39.
    T. Seres, V. Ravichandran, T. Moriguchi, K. Rokutan, and J. Thomas, R.B. Johnston, Jr., Protein S-thiolation and dethiolation during the respiratory burst in human monocytes: a reversible post-translational modification with potential for buffering the effects of oxidant stress, J Immunol. 156:1973 (1996).PubMedGoogle Scholar
  40. 40.
    R. Stocker, Y. Yamamoto, A. McDonagh, A. Glazer, and B. Ames, Bilirubin is an antioxidant of possible physiological importance, Science. 235:1043 (1987).PubMedCrossRefGoogle Scholar
  41. 41.
    S. Key se and R. Tyrrell, Heme oxygenase is the major 32-KDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite, Proc Natl Acad Sci, USA. 11:787 (1989).Google Scholar
  42. 42.
    C. Cross, B. Halliwell, and A. Allen, Antioxidant protection: a function of tracheobronchial and gastrointestinal mucus, Lancet. 1:1328 (1984).PubMedCrossRefGoogle Scholar
  43. 43.
    M. Grisham, C, VonRitter, B. Smith, J. Lamont, and D. Granger, Interaction between oxygen radicals and gastric mucin, Am J Physiol. 253:G93 (1987).PubMedGoogle Scholar
  44. 44.
    L. Cohn, V. Kinnula, and K. Adler, Antioxidant properties of guinea pig tracheal epithelial cells in vitro, Am J Physiol. 266:L397 (1994).PubMedGoogle Scholar
  45. 45.
    C. Sen and L. Packer, Antioxidant and redox regulation of gene transcription, FASEB J. 10:709 (1996).PubMedGoogle Scholar
  46. 46.
    J. Remade, M. Raes, O. Toussaint, P. Renard, and G. Rao, Low levels of reactive oxygen species as modulators of cell function, Mutat Res. 316:103 (1995).Google Scholar
  47. 47.
    J.M. Muller, R.A. Rupee, and P.A. Baeuerle, Study of gene regulation by NF-kappa B and AP-1 in response to reactive oxygen intermediates, Methods. 11:301 (1997).PubMedCrossRefGoogle Scholar
  48. 48.
    A.S. Baldwin, Jr., The NF-kappa B and I kappa B proteins: new discoveries and insights, Annu Rev Immunol. 14:649 (1996).PubMedCrossRefGoogle Scholar
  49. 49.
    S. Schoonbroodt, S. Legrand-Poels, M. Best-Belpomme, and J. Piette, Activation of NF-kappaB transcription factor in a T-lymphocytic cell line by hypochlorous acid, Biochemical J. 321:117 (1997).Google Scholar
  50. 50.
    M. Schwartz, J. Repine, and E. Abraham, Xanthine oxidase-derived oxygen radicals increase lung cytokine expression in mice subjected to hemorrhagic shock, Am J Respir Cell Mol Biol. 12:434 (1995).PubMedGoogle Scholar
  51. 51.
    C. Munoz, D. Pascual-Salcedo, M. Castellanos, A. Alfranca, J. Aragones, A. Vara, M.J. Redondo, and M.O. de Landazuri, Pyrrolidine dithiocarbamate inhibits the production of interleukin-6, interleukin-8, and granulocyte-macrophage colony-stimulating factor by human endothelial cells in response to inflammatory mediators: modulation of NF-kappa B and AP-1 transcription factors activity, Blood. 88:3482 (1996).PubMedGoogle Scholar
  52. 52.
    T. Blackwell and J. Christman, The role of nuclear factor-KB in cytokine gene regulation, Am J Respir Cell Mol Biol 17:3 (1997).PubMedGoogle Scholar
  53. 53.
    C. Kretz-Remy, P. Mehlen, M. Mirault, and A. Arrigo, Inhibition of I kappa-B alpha phosphorylation and degradation and subsequent NF-kappa B activation by glutathione peroxidase overexpression, J Cell Biol 133:1083 (1996).PubMedCrossRefGoogle Scholar
  54. 54.
    S. Chakraborti, G. Gurtner, and J. Michael, Oxidant-mediated activation of phospholipase A2 in pulmonary endothelium, Am J Physiol 257:L430 (1989).PubMedGoogle Scholar
  55. 55.
    J. Samet, T. Noah, R. Devlin, J. Yankaskas, K. McKinnon, L. Dailey, and M. Friedman, Effect of ozone on platelet activating factor production in phorboldifferentiated HL60 cells, a human bronchial epithelial cell line (BEAS S6), and primary human bronchial epithelial cells, Am J Respir Cell Mol Biol. 7:514 (1992).PubMedGoogle Scholar
  56. 56.
    K.P. McKinnon, M.C. Madden, T.L. Noah, and R.B. Devlin, In vitro ozone exposure increases release of arachidonic acid products from a human bronchial epithelial cell line, Tox Appl Pharm. 118:215 (1993).CrossRefGoogle Scholar
  57. 57.
    K. Kobayashi, M. Salathe, M. Pratt, N.J. Cartagena, F. Soloni, Z.V. Seybold, and A. Wanner, Mechanism of hydrogen peroxide-induced inhibition of sheep airway cilia, Am J Respir Cell Mol Biol. 6:667 (1992).PubMedGoogle Scholar
  58. 58.
    G. Schieven, J. Kirihara, D. Myers, J. Ledbetter, and F. Uckun, Reactive oxygen intermediates activate NF-KB in a tyrosine kinase dependent mechanism and in combination with vanadate activate the p56Ick and p59fyn tyrosine kinases in human lymphocytes, Blood. 82:1212 (1993).PubMedGoogle Scholar
  59. 59.
    A. Weiss and D. Littman, Signal transduction by lymphocyte antigen receptors, Cell. 76:263 (1994).PubMedCrossRefGoogle Scholar
  60. 60.
    P. Simeonova and M. Luster, Asbestos induction of nuclear transcription factors and interleukin 8 gene regulation, Am J Respir Cell Mol Biol. 15:787 (1996).PubMedGoogle Scholar
  61. 61.
    C. Hoyal, E. Gozal, H. Zhou, K. Foldenauer, and H. Forman, Modulation of the rat alveolar macrophage respiratory burst by hydroperoxides is calcium dependent, Arch Biochem Biophys. 326:166 (1996).PubMedCrossRefGoogle Scholar
  62. 62.
    K.A. Roebuck, A. Rahman, V. Lakshminarayanan, K. Janakidevi, and A.B. Malik, H2O2 and tumor necrosis factor-alpha activate intercellular adhesion molecule 1 (ICAM-1) gene transcription through distinct cis-regulatory elements within the ICAM-1 promoter, J Biol Chem. 270:18966 (1995).PubMedCrossRefGoogle Scholar
  63. 63.
    M. Whiteman and B. Halliwell, Thiourea and dimethylthiourea inhibit peroxynitritedependent damage: nonspecificity as hydroxyl radical scavengers, Free Radical Biol & Med. 22:1309 (1997).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1998

Authors and Affiliations

  • Linda D. Martin
    • 1
  • Thomas M. Krunkosky
    • 1
  • Judith A. Voynow
    • 2
  • Kenneth B. Adler
    • 1
  1. 1.College of Veterinary MedicineNorth Carolina State UniversityRaleighUSA
  2. 2.Pediatric Pulmonary Diseases Dept.Duke University Medical CenterDurhamUSA

Personalised recommendations