Skip to main content

ADP-Ribosylation and Early Transcription Regulation by Bacteriophage T4

  • Chapter
ADP-Ribosylation in Animal Tissues

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 419))

Abstract

Bacteriophage T4 codes at least for two ADP-ribosylating activities, the 76 kDa Alt and the 24 kDa Mod gene products. The main target for both enzymes is the host RNA polymerase. We cloned and sequenced the alt gene and overexpressed the corresponding enzyme. The recombinant protein shows ADP-ribosylating activities in vitro, as had been described earlier for the native enzyme isolated from phage heads. The native as well as the recombinant protein ADP-ribosylate the a-subunit of RNA polymerase, but also subunits ß,ß and σ70 and perform an autoribosylation reaction.

Taking advantage of the pKWIII test system, constructed to measure promoter strengths in vivo, it was found that ADP-ribosylation of RNA polymerase leads to an increase of transcription from T4 early promoters up to a factor of two. In an infected host cell this should cause an enhanced expression of T4 genes. Depending on whether RNA polymerase was ADP-ribosylated or not, it initiated transcription at T4 promoters with different sequence characteristics: unribosylated RNA polymerase recognizes the early T4 promoters by an extended -10 region, whereas the ribosylated enzyme selects for T4 early promoters with an extended T4-specific and highly conserved -35 region. These results may reflect how the virus, step by step imposes its genetic program on the host cell, and in part they give a rationale for the extension of the consensus sequence observed with these promoters.

We also sequenced the genomic region of the T4 mod gene and found two open reading frames coding both for proteins of approximately 24 kDa. Up to now none of the reading frames could be cloned into E. coli in an active form, making it highly probable that the ADP-ribosylation pattern inflicted by gene product Mod on host RNA polymerase is deleterious to these bacteria. Comparisons of the amino acid sequences showed significant homologies among the two reading frames. Computer analysis reveals that both Mod sequences and also the sequence of the Alt protein exhibit a structural concordance with the catalytic domains of other prokaryotic ADP-mono-ribosyltransferases such as the Pseudomonas aeruginosa exotoxin A, the cholera labile enterotoxin, the diphteria toxin, the heat labile enterotoxin A of E. coli, and the pertussis toxin. We present a detailed model for T4 transcription regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kutter E., T. Stidham, B. Guttman, D. Batts, S. Peterson, T. Djavakhishvili, F. Arisaka, V. Mesyanzhinov, W. Rüger, & G. Mosig. 1994. In: Molecular biology of bacteriophage T4: J.D. Karam, J.W. Drake, K.N. Kreuzer, G. Mosig, D.H. Hall, ASM Press, Washington D.C. pp. 491–519.

    Google Scholar 

  2. Goff, C.G., & J. Setzer. 1980. ADP-ribosylation of Escherichia coll RNA polymerase is nonessential for bacteriophage T4 development. J. Virol. 33: 547–549.

    PubMed  CAS  Google Scholar 

  3. Wilkens K., & W. Ruger. 1994. In: Molecular biology of bacteriophage T4: J.D. Karam, J.W. Drake, K.N. Kreuzer, G. Mosig, D.H. Hall, ASM Press, Washington D.C. pp. 132–141.

    Google Scholar 

  4. Stitt B., & D. Hinton. 1994. In: Molecular biology of bacteriophage T4: J.D. Karam, J.W. Drake, K.N. Kreuzer, G. Mosig, D.H. Hall, ASM Press, Washington D.C. pp. 142–160.

    Google Scholar 

  5. Williams K.P., G.A. Kassavetis, D.R. Herendeen, & E.P. Geiduschek. 1994. In: Molecular biology of bacteriophage T4: J.D. Karam, J.W. Drake, K.N. Kreuzer, G. Mosig, D.H. Hall, ASM Press, Washington D.C. pp. 161–175.

    Google Scholar 

  6. Mailhammer, R., H.L. Yang, G. Reiness, & G. Zubay. 1975. Effects of bacteriophage T4-induced modification of Escherichia coli RNA polymerase on gene expression in vitro. Proc. Natl. Acad. Sci. V. S. A. 72: 4928–932.

    Article  CAS  Google Scholar 

  7. Goldfarb, A. 1981. Changes in the promoter range of RNA polymerase resulting from bacteriophage T4-induced modification of core enzyme. Proc. Natl Acad. Sci. U. S. A. 78: 3454–3458.

    Article  PubMed  CAS  Google Scholar 

  8. Goldfarb, A., & P. Palm. 1981. Control of promoter utilization by bacteriophage T4-induced modification of RNA polymerase alpha subunit. Nucleic Acids Res. 9: 4863–4878.

    Article  PubMed  CAS  Google Scholar 

  9. Goldfarb, A., & S. Malik. 1984. Changed promoter specificity and antitermination properties displayed in vitro by bacteriophage T4-modified RNA polymerase. J. Mol. Biol. 177: 87–105.

    Article  PubMed  CAS  Google Scholar 

  10. Drivdahl, R.H., & E.M. Kutter. 1990. Inhibition of transcription of cytosine-containing DNA in vitro by the ale gene product of bacteriophage T4. J. Bacteriol. 172: 2716–2727.

    PubMed  CAS  Google Scholar 

  11. Gram, H., H.D. Liebig, A. Hack, E. Niggemann, & W. Rüger. 1984. A physical map of bacteriophage T4 including the positions of strong promoters and terminators recognized in vitro. Mol. Gen. Genet. 194: 232–240.

    Article  PubMed  CAS  Google Scholar 

  12. Liebig, H.D., & W. Rüger. 1989. Bacteriophage T4 early promoter regions. Consensus sequences of promoters and ribosome-binding sites. J. Mol. Biol. 208: 517–536.

    Article  PubMed  CAS  Google Scholar 

  13. Schneider, T.D., G.D. Stormo, L. Gold, & A. Ehrenfeucht. 1986. Information content of binding sites on nucleotide sequences. J. Mol. Biol. 188: 415–431.

    Article  PubMed  CAS  Google Scholar 

  14. Wilkens, K., & W. Rüger. 1996. Characterization of bacteriophage T4 early promoters in vivo with a new promoter probe vector. Plasmid 35: 108–120.

    Article  PubMed  CAS  Google Scholar 

  15. Onorato, L., B. Stirmer, & M.K. Showe. 1978. Isolation and characterization of bacteriophage T4 mutant preheads. J. Virol. 27: 409–426.

    PubMed  CAS  Google Scholar 

  16. Goff, C.G. 1979. Bacteriophage T4 alt gene maps between genes 30 and 54. J. Virol. 29: 1232–1234.

    PubMed  CAS  Google Scholar 

  17. Horvitz, H.R. 1974. Bacteriophage T4 mutants deficient in alteration and modification of the Eschehchia coli RNA polymerase. J. Mol. Biol. 90: 739–750.

    Article  PubMed  CAS  Google Scholar 

  18. Koch, T., & W. Rüger. 1994. The ADP-ribosyltransferases (gpAlt) of bacteriophages T2, T4, and T6: sequencing of the genes and comparison of their products. Virology 203: 294–298.

    Article  PubMed  CAS  Google Scholar 

  19. Tabor, S., & C.C. Richardson. 1985. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc. Natl. Acad. Sci. USA 82: 1074–1078.

    Article  PubMed  CAS  Google Scholar 

  20. Coppo, A., A. Manzi, J.F. Pulitzer, & H. Takahashi. 1973. Abortive bacteriophage T4 head assembly in mutants of Escherichia coli. J. Mol. Biol. 76: 61–87.

    Article  PubMed  CAS  Google Scholar 

  21. Rossmann, M.G., D. Moras, & K.W. Olsen. 1974. Chemical and biological evolution of nucleotide-binding protein.Nature 250: 194–199.

    Article  PubMed  CAS  Google Scholar 

  22. Chou, P.Y., & G.D. Fasman. 1978. Empirical predictions of protein conformation. Annu Rev Biochem 47: 251–276.

    Article  PubMed  CAS  Google Scholar 

  23. Koch, T., A. Raudonikiene, K. Wilkens, & W. Rüger. 1995. Overexpression, purification, and characterization of the ADP-ribosyltransferase (gpAlt) of Bacteriophage T4: ADP-ribosylation of E. coli RNA polymerase modulates T4 “early” transcription. Gene Expression 4: 253–264.

    PubMed  CAS  Google Scholar 

  24. Rohrer, H., W. Zillig, & R. Mailhammer. 1975. ADP-ribosylation of DNA-dependent RNA polymerase of Escherichia coli by an NAD+: protein ADP-ribosyltransferase from bacteriophage T4. Eur: J. Biochem. 60: 227–238.

    Article  CAS  Google Scholar 

  25. Morse, M.L., K.L. Hill, J.B. Egan, & W. Hengstenberg. 1968. Metabolism of lactose by Staphylococcus aureus and its genetic basis. J. Bacteriol. 95: 2270–2274.

    PubMed  CAS  Google Scholar 

  26. Breidt, F.J., W. Hengstenberg, U. Finkeldei, & G.C. Stewart. 1987. Identification of the genes for the lactose-specific components of the phosphotransferase system in the lac operon of Staphylococcus aureus. J. Biol. Chem. 262: 16444–16449.

    PubMed  CAS  Google Scholar 

  27. Igarashi, K., N. Fujita, & A. Ishihama. 1991. Identification of a subunit assembly domain in the alpha subunit of Escherichia coli RNA polymerase. J. Mol. Biol. 218: 1–6.

    Article  PubMed  CAS  Google Scholar 

  28. Ross, W., K.K. Gosink, J. Salomon, K. Igarashi, C. Zou, A. Ishihama, K. Severinov, & R.L. Gourse. 1993. A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science 262: 1407–1413.

    Article  PubMed  CAS  Google Scholar 

  29. Blatter, E.E., W. Ross, H. Tang, R.L. Gourse, & R.H. Ebright. 1994. Domain organization of RNA polymerase alpha subunit: C-terminal 85 amino acids constitute a domain capable of dimerization and DNA binding. Cell 78: 889–896.

    Article  PubMed  CAS  Google Scholar 

  30. Busby, S., & R.H. Ebright. 1994. Promoter structure, promoter recognition, and transcription activation in prokaryotes. Cell 79: 743–746.

    Article  PubMed  CAS  Google Scholar 

  31. Skorko, R., W. Zillig, H. Rohrer, H. Fujiki, & R. Mailhammer. 1977. Purification and properties of the NAD+: protein ADP-ribosyltransferase responsible for the T4-phage-induced modification of the alpha subunit of DNA-dependent RNA polymerase of Escherichia coli. Eur. J. Biochem. 79: 55–66.

    Article  PubMed  CAS  Google Scholar 

  32. Hawley, D.K., & W.R. McClure. 1983. Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res. 11: 2237–2255.

    Article  PubMed  CAS  Google Scholar 

  33. Lisser, S., & H. Margalit. 1993. Compilation of E. coli mRNA promoter sequences. Nucleic Acids Res. 21: 1507–1516.

    Article  PubMed  CAS  Google Scholar 

  34. Negishi, T., Fujita, N. & Ishihama, A. 1995. Structural map of the alpha subunit of Escherichia coli RNA polymerase: structural domains identified by proteolytic cleavage. J. Mol. Biol. 248: 723–728.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wilkens, K., Tiemann, B., Bazan, F., Rüger, W. (1997). ADP-Ribosylation and Early Transcription Regulation by Bacteriophage T4. In: Haag, F., Koch-Nolte, F. (eds) ADP-Ribosylation in Animal Tissues. Advances in Experimental Medicine and Biology, vol 419. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8632-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8632-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4652-4

  • Online ISBN: 978-1-4419-8632-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics