Skip to main content

Cell Surface Dynamics of GPI-Anchored Proteins

  • Chapter
ADP-Ribosylation in Animal Tissues

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 419))

Abstract

Several cell surface eukaryotic proteins have a glycosylphosphoinositol lipid (GPI) modification at the carboxy-terminal end that serves as their sole means of membrane anchoring. In this report we review recent observations regarding the surface dynamics of GPI-anchored proteins. We discuss the association of GPI-anchored proteins with caveolae at the cell surface and their role in signal transduction as determined by the ability of GPI-anchored proteins to form detergent-insoluble complexes enriched in several cytoplasmic proteins including non-receptor type tyrosine kinases and caveolin/VIP-21, a component of the striated coat of caveolae. We have shown by immunofluorescence and electron microscopy that GPI-anchored proteins are not constitutively concentrated in caveolae but may be enriched in these structures only after cross-linking. While caveolae occupy only a small fraction of the cell surface (< 4%) almost all of the GPI-anchored protein at the cell surface becomes incorporated into detergent-insoluble low-density complexes, suggesting that these proteins are intrinsically detergent-insoluble in the milieu of the plasma membrane, and their co-purification with caveolin is not reflective of their native distribution. The finding that GPI-anchored proteins are not normally clustered over caveolae raised questions about the involvement of caveolae in the internalization of GPI-anchored proteins. In recent studies we have found that GPI-anchored proteins are internalized into bona fide endosomes wherein they appear to be sorted from bulk membrane components. The implications of these observations on the biology of GPI-anchored proteins are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cross, G. A. M. 1990. Glycolipid anchoring of plasma membrane proteins. Ann. Rev. Cell Biol., 6:1–34.

    Article  PubMed  CAS  Google Scholar 

  2. Englund, P. T. 1993. The structure and biosynthesis of glycosyl phosphatidylinositol protein anchors. [Review]. Annu Rev Biochem, 62:121–38.

    Article  PubMed  CAS  Google Scholar 

  3. Ferguson, M. A. J. and A. F. Williams 1988. Cell-surface anchoring of proteins via glycosyl phosphatidylinositol structures. Ann. Rev. Biochem., 57:285–320.

    Article  PubMed  CAS  Google Scholar 

  4. Field, M. C. and A. K. Menon 1992. Glycolipid-anchoring of cell surface proteins. In Lipid modification of proteins. Schlesinger, M. J., Schlesinger, M. J.s. CRC Press, Boca Raton Ann Arbour London Tokyo. 83–134.

    Google Scholar 

  5. Low, M. G. 1989. The glycosyl-phosphatidylinositol anchor of membrane proteins. Biochim. Biophys. Ada, 988:427–454.

    Article  CAS  Google Scholar 

  6. Mayor, S. and A. K. Menon 1990. Structural analysis of the glycosylinositol phospholipid anchors of membrane proteins. Methods: A Companion to Methods in Enzymology, 1:297–305.

    Article  CAS  Google Scholar 

  7. McConville, M. J. and M. A. Ferguson 1993. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem. J., 294:30–204.

    Google Scholar 

  8. Ferguson, M. A. J. 1994. What can GPI do for you. Parasitology Today, 10:48–52.

    Article  PubMed  CAS  Google Scholar 

  9. Lisanti, M. P. and E. Rodriguez-Boulan 1990. Glycophospholipid membrane anchoring provides clues to the mechanism of protein sorting in polarized epithelial cells. Trends Biochem. Sci., 15:113–118.

    Article  PubMed  CAS  Google Scholar 

  10. Simons, K. and A. Wandinger-Ness 1990. Polarized sorting in epithelia. [Review]. Cell, 62:207–10.

    Article  PubMed  CAS  Google Scholar 

  11. Brown, D. 1993. The tyrosine kinase connection: how GPI-anchored proteins activate T cells. [Review]. Current Opinion in Immunology, 5:349–54.

    Article  PubMed  CAS  Google Scholar 

  12. Robinson, P. J. 1991. Phosphatidylinositol membrane anchors and T-cell activation. Immunol. Today, 12:35–41.

    Article  PubMed  CAS  Google Scholar 

  13. Dupree, P., R. G. Parton, G. Raposo, T. V. Kurzchalia and K. Simons 1993. Caveolae and sorting in the trans-Golgi network of epithelial cells. Embo J, 12:1597–605.

    PubMed  CAS  Google Scholar 

  14. Rothberg, K. G., J. E. Heuser, W. C. Donzell, Y.-S. Ying, J. R. Glenney and R. G. W. Anderson 1992. Caveolin, a protein component of caveolae membrane coats. Cell, 68:673–682.

    Article  PubMed  CAS  Google Scholar 

  15. Brown, D. 1992. Interactions between GPI-anchored proteins and membrane lipids. Trends in Cell Biology, 2:338–343.

    Article  PubMed  CAS  Google Scholar 

  16. Brown, D. A. and J. K. Rose 1992. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell, 68:533–44.

    Article  PubMed  CAS  Google Scholar 

  17. Glenney, J. R. and L. Zokas 1989. Novel tyrosine kinase substrates from rous sarcoma virus transformed cells are present in the membrane skeleton. J. Cell Bioi, 108:2401–2408.

    Article  CAS  Google Scholar 

  18. Hooper, N. M. and A. J. Turner 1988. Ectoenzymes of the kidney microvillar membrane: differential solubilization by detergents can predict a glycosyl-phosphatidylinositol membrane anchor. Biochem. J., 250:865–869.

    PubMed  CAS  Google Scholar 

  19. Lisanti, M. P., Z. L. Tang and M. Sargiacomo 1993. Caveolin forms a hetero-oligomeric protein complex that interacts with an apical GPI-linked protein: implications for the biogenesis of caveolae. Journal of Cell Biology, 123:595–604.

    Article  PubMed  CAS  Google Scholar 

  20. Anderson, R. G. 1993. Caveolae: where incoming and outgoing messengers meet. [Review]. Proceedings of the National Academy of Sciences of the United States of America, 90:10909–13.

    Article  PubMed  CAS  Google Scholar 

  21. Mayor, S., K. G. Rothberg and F. R. Maxfield 1994. Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking. Science, 264:1948–51.

    Article  PubMed  CAS  Google Scholar 

  22. Mayor, S. and F. R. Maxfield 1995. Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent treatment.Molecular Biology of the Cell, 6:929–44.

    PubMed  CAS  Google Scholar 

  23. Parton, R. G., B. Joggerst and K. Simons 1994. Regulated internalization of caveolae. J. Cell BioL, 127:1199–1215.

    Article  PubMed  CAS  Google Scholar 

  24. Hooper, N. M. and A. Bashir 1991. Glycosyl-phosphatidylinositol-anchored membrane proteins can be distinguished from transmembrane polypeptide-anchored proteins by differential solubilization and temperature-induced phase separation in Triton X-114. Biochem J., 280:745–751.

    PubMed  CAS  Google Scholar 

  25. Sargiacomo, M., M. Sudol, Z. Tang and M. P. Lisanti 1993. Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. Journal of Cell Biology, 122:789–807.

    Article  PubMed  CAS  Google Scholar 

  26. Chang, W. J., Y. S. Ying, K. G. Rothberg, N. M. Hooper, A. J. Turner, H. A. Gambliel, G. J. De, S. M. Mumby, A. G. Gilman and R. G. Anderson 1994. Purification and characterization of smooth muscle cell caveolae. Journal of Cell Biology, 126:127–38.

    Article  PubMed  CAS  Google Scholar 

  27. Fra, A. M., E. Williamson, K. Simons and R. G. Parton 1994. Detergent-insoluble glycolipid microdomains in lymphocytes in the absence of caveolae. J. BioL Chem, 269:30745–30748.

    PubMed  CAS  Google Scholar 

  28. Lisanti, M. P., P. E. Scherer, J. Vidugiriene, Z. Tang, V. A. Hermanowski, Y. H. Tu, R. F. Cook and M. Sargiacomo 1994. Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease. Journal of Cell Biology, 126:111–26.

    Article  PubMed  CAS  Google Scholar 

  29. Schroeder, R., E. London and D. A. Brown 1994. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc. Natl. Acad. Sci. (USA), 91:12130–12134.

    Article  CAS  Google Scholar 

  30. Bohuslav, J., T. Cinek and V. Horejsi 1993. Large, detergent-resistant complexes containing murine antigens Thy-1 and Ly-6 and protein tyrosine kinase p561ck. European Journal of Immunology, 23:825–31.

    Article  PubMed  CAS  Google Scholar 

  31. Cinek, T. and V. Horejsi 1992. The nature of large noncovalent complexes containing glycosyl-phosphatidylinositol-anchored membrane glycoproteins and protein tyrosine kinases. Journal of Immunology, 149:2262–70.

    CAS  Google Scholar 

  32. Stefanova, I., V. Horejsi, I. J. Ansotegui, W. Knapp and H. Stockinger 1991. GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science, 254:1016–1019.

    Article  PubMed  CAS  Google Scholar 

  33. Lisanti, M. P., P. E. Scherer, Z. L. Tang and M. Sargiacomo 1994. Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends in Cell Biology, 4:231–235.

    Article  PubMed  CAS  Google Scholar 

  34. Shenoy, S. A., D. J. Dietzen, J. Kwong, D. C. Link and D. M. Lublin 1994. Cysteine3 of Src family protein tyrosine kinase determines palmitoylation and localization in caveolae. Journal of Cell Biology, 126:353–63.

    Article  Google Scholar 

  35. Yu, J., D. A. Fishman and T. L. Steck 1973. Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J. Supramol. Struct., 1:233–248.

    Article  PubMed  CAS  Google Scholar 

  36. Felsenfeld, D. P., M. A. Hynes, K. M. Skoler, A. J. Furley and T. M. Jessell 1994. TAG-1 can mediate homophilic binding, but neurite outgrowth on TAG-1 requires an LI-like molecule and beta 1 integrins. Neuron, 12:675–90.

    Article  PubMed  CAS  Google Scholar 

  37. Furley, A. J., S. B. Morton, D. Manalo, D. Karagogeos, J. Dodd and T. M. Jessell 1990. The axonal glyco-protein TAG-1 is an immunoglobulin superfamily member with neurite outgrowth-promoting activity. Cell, 61:157–70.

    Article  PubMed  CAS  Google Scholar 

  38. Kindzelskii, A. L., Z. O. Laska, R. 3. Todd and H. R. Petty 1996. Urokinase-type plasminogen activator receptor reversibly dissociates from complement receptor type 3 (alpha M beta 2’ CD1 lb/CDl 8) during neutrophil polarization. Journal of Immunology, 156:297–309.

    CAS  Google Scholar 

  39. Zarewych, D. M., A. L. Kindzelskii, R. 3. Todd and H. R. Petty 1996. LPS induces CD14 association with complement receptor type 3, which is reversed by neutrophil adhesion. Journal of Immunology, 156:430–33.

    CAS  Google Scholar 

  40. Borchelt, D. R., A. Taraboulos and S. B. Prusiner 1992. Evidence for synthesis of scrapie prion proteins in the endocytic pathway. Journal of Biological Chemistry, 267:16188–99.

    PubMed  CAS  Google Scholar 

  41. Kamen, B. A., M. T. Wang, A. J. Streckfuss, X. Peryea and R. G. Anderson 1988. Delivery of folates to the cytoplasm of MA 104 cells is mediated by a surface membrane receptor that recycles. J Biol Chem, 263:13602–9.

    PubMed  CAS  Google Scholar 

  42. Keller, G.-A., M. W. Siegel and I. W. Caras 1991. Endocytosis of glycophospholipid-anchored and trans-membrane forms of CD4 by different endocytic pathways. EMBOJ., 11:863–874.

    Google Scholar 

  43. Lisanti, M. P., I. W. Caras, T. Gilbert, D. Hanzel and B. E. Rodriguez 1990. Vectorial apical delivery and slow endocytosis of a glycolipid-anchored fusion protein in transfected MDCK cells_. Proc. Natl. Acad. ScL OS/*, 87:7419–7423.

    Article  CAS  Google Scholar 

  44. Rothberg, K. G., Y.-S. Ying, J. F. Kolhouse, B. A. Kamen and R. G. W. Anderson 1990. The glycophospholipid-linked folate receptor internalizes folate without entering the clathrin-coated pit endocytic pathway. J. Cell Biol, 110:637–649.

    Article  PubMed  CAS  Google Scholar 

  45. Taraboulos, A., D. Serban and S. B. Prusiner 1990. Scrapie prion proteins accumulate in the cytoplasm of persistently infected cultured cells. J. Cell Biol, 110:2117–2132.

    Article  PubMed  CAS  Google Scholar 

  46. Anderson, R. G. W. 1993. Potocytosis of small molecules and ions by caveolae. Trends Cell Biol, 3:69–72.

    Article  PubMed  CAS  Google Scholar 

  47. Turek, J. J., C. P. Leamon and P. S. Low 1993. Endocytosis of folate-protein conjugates: ultrastructural localization in KB cells. Journal of Cell Science, 106:423–430.

    PubMed  CAS  Google Scholar 

  48. Koval, M. and R. E. Pagano 1989. Lipid recycling between the plasma membrane and intracellular compartments: transport and metabolism of fluorescent sphingomyelin analogues in cultured fibroblasts. J. Cell Biol, 108:2169–2181.

    Article  PubMed  CAS  Google Scholar 

  49. Mayor, S., J. P. Presley and F. R. Maxfield 1993. Sorting of membrane components from endosomes and subsequent recycling to the cell surface occurs by a bulk flow process.J. Cell Biol, 121:1257–1269.

    Article  PubMed  CAS  Google Scholar 

  50. Lamaze, C. and S. L. Schmid 1995. The emergence of clathrin-independent pinocytic pathways. Current Opinion in Cell Biology, 7:573–580.

    Article  PubMed  CAS  Google Scholar 

  51. Birn, H., J. Selhub and E. I. Christensen 1993. Cell fractionation and electron microscope studies of kidney folate-binding protein. American Journal of Physiology, 264:C302–C310.

    PubMed  CAS  Google Scholar 

  52. Rijnboutt, S., G. Jansen, G. Posthuma, J. B. Hynes, J. H. Schornagel and G. J. Strous 1996. Endocytosis of GPI-linked membrane folate receptor-a. J. Cell Biol, 132:35–47.

    Article  PubMed  CAS  Google Scholar 

  53. Taraboulos, A., M. Scott, A. Semenov, D. Avraham, L. Laszlo and S. B. Prusiner 1995. Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. Journal of Cell Biology, 129:121–32.

    Article  PubMed  CAS  Google Scholar 

  54. Ritter, T. E., O. Fajardo, H. Matsue, R. G. Anderson and S. W. Lacey 1995. Folate receptor targeted to clathrin-coated pits cannot regulate vitamin uptake. Proc Natl Acad Sci (USA), 92:3824–3828.

    Article  CAS  Google Scholar 

  55. Chang, W.-J., K. G. Rothberg, B. A. Kamen and R. G. W. Anderson 1992. Lowering cholesterol content of MA 104 cells inhibits receptor-mediated transport of folate. J. Cell Biol, 118:63–69.

    Article  PubMed  CAS  Google Scholar 

  56. Rothberg, K. G., Y.-S. Ying, B. A. Kamen and R. G. W. Anderson 1990. Cholesterol controls the clustering of the glycophospholipid-linked membrane receptor for 5-methyltetrahydrofolate. J. Cell Biol, 111:2931–2938.

    Article  PubMed  CAS  Google Scholar 

  57. Ferguson, M. A. J., S. W. Homans, R. A. Dwek and T. W. Rademacher 1988. Glycosyl-phosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. Science, 239:753–759.

    Article  PubMed  CAS  Google Scholar 

  58. Dunn, K. W. and F. R. Maxfield 1992. Delivery of ligands from sorting endosomes to late endosomes occurs by maturation of sorting endosomes. J. Cell Biol, 117:301–310.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maxfield, F.R., Mayor, S. (1997). Cell Surface Dynamics of GPI-Anchored Proteins. In: Haag, F., Koch-Nolte, F. (eds) ADP-Ribosylation in Animal Tissues. Advances in Experimental Medicine and Biology, vol 419. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8632-0_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8632-0_47

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4652-4

  • Online ISBN: 978-1-4419-8632-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics