Skip to main content

Activation of Toxin ADP-Ribosyltransferases by the Family of ADP-Ribosylation Factors

  • Chapter
ADP-Ribosylation in Animal Tissues

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 419))

Abstract

ADP-ribosylation factors or ARFs are 20-kDa guanine nucleotide-binding proteins, initially identified as stimulators of cholera toxin-catalyzed ADP-ribosylation of Gsa. We now know that ARFs play a critical role in many vesicular trafficking events and ARF activation of a membrane-associated phospholipase D (PLD) has been recognized. ARF is active and associates with membranes when GTP is bound. The active state is terminated by hydrolysis of bound GTP, producing inactive ARF*GDP. The nucleotide effect on ARF association with membranes is related to alteration in orientation of the N-terminal myristoyl moiety that is important for ARF function. Cycling of ARF between active and inactive states involves guanine nucleotide-exchange proteins (GEPs) that accelerate replacement of bound GDP with GTP and GTPase-activating proteins (GAPS) that are responsible for ARF inactivation.

Six mammalian ARFs have been identified by cDNA cloning. Class I ARFs 1 and 3 have been studied most extensively. Their activation (GTP binding) is catalyzed by a GEP now purified from spleen cytosol. In crude preparations, GEP was inhibited by brefeldin A (BFA), which in cells causes apparent disintegration of Golgi. Demonstration that the ~60 kDa purified GEP was not inhibited by BFA means that contrary to earlier belief, there must be another protein to mediate BFA inhibition. GEP activity was greatly enhanced by phosphatidyl serine. The purified GEP, equally active with ARFs 1 and 3, was inactive with ARFs 5 and 6 (Classes II and III); myristoylated ARFs were better substrates than were their non-myristoylated counterparts.

ARF GAP purified from bovine spleen cytosol in our laboratory had much broader substrate specificity than the GEP. It used both ARFs 5 and 6 at least as well as ARFs 1 and 3; myristoylation was without effect. It also accelerated GTP hydrolysis by certain ARF mutants and an ARF-like protein (ARL1) that does not have ARF activity. The purified GAP also differed from the GEP in its rather specific requirement for phosphatidylinositol bisphosphate. This was also observed with a seemingly different ARF GAP that was purified and subsequently cloned in Cassel’s laboratory. Activation and inactivation of ARFs present many potential sites for physiological regulation and, therefore, for pathological disruption of ARF function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kahn, R.A., A.G. Gilman. 1984. Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin. J. Biol. Chem. 259: 6228–6234.

    PubMed  CAS  Google Scholar 

  2. Tsai, S.-C, M. Noda, R. Adamik, P.P. Chang, H.-C. Chen, J. Moss, & M. Vaughan. 1988. Stimulation of choleragen enzymatic activities by GTP and two soluble proteins purified from bovine brain. J. Biol. Chem. 263: 1768–1772.

    PubMed  CAS  Google Scholar 

  3. Noda, M., S.-C. Tsai, R. Adamik, J. Moss, & M. Vaughan. 1990. Mechanism of cholera toxin activation by a guanine nucleotide-dependent 19-kDa protein. Biochim. Biophys. Acta. 1034: 195–199.

    Article  PubMed  CAS  Google Scholar 

  4. Moss, J., S.J. Stanley, M. Vaughan, & T. Tsuji. 1993. Interaction of ADP-ribosylation factor with Escherichia coli enterotoxin that contains an inactivating lysine 112 substitution. J. Biol. Chem. 268: 6383–6387.

    PubMed  CAS  Google Scholar 

  5. Moss, J., & M. Vaughan. 1993. Mini-review: ADP-ribosylation factors, 20,000 Mr guanine nucleotidebinding protein activators of cholera toxin and components of intracellular vesicular transport systems. In: Cellular Signalling. Pergamon Press Ltd., Great Britain.

    Google Scholar 

  6. Murtagh, J.J., Jr., M.R. Mowatt, C.-M. Lee, F.-J.S. Lee, K. Mishima, T.E. Nash, J. Moss, & M. Vaughan. 1992. Guanine nucleotide-binding proteins in the intestinal parasite Giardia lamblia. J. Biol. Chem. 267: 9654–9662.

    CAS  Google Scholar 

  7. Lee, F.-J.S., L.A. Stevens, L.A. Hall, J.J. Murtagh, Jr., Y.L. Kao, J. Moss, & M. Vaughan. 1994. Characterization of class II and class III ADP-ribosylation factor genes and proteins in Drosophila melanogastei: J. Biol. Chem. 269: 21555–21560.

    PubMed  CAS  Google Scholar 

  8. Lee, F.-J., L.A. Stevens, Y.L. Kao, J. Moss, & M. Vaughan. 1994. Characterization of a glucose-repressible ADP-ribosylation factor 3 (ARF3) from Saccharomyces cerevisiae. J. Biol. Chem. 269: 20931–20937.

    CAS  Google Scholar 

  9. D’S ouza-Schorey, C, G. Li, M.I. Colombo, & P.D. Stahl. 1995. A regulatory role for ARF6 in receptor-mediated endocytosis. Science 267: 1175–1178.

    Article  PubMed  Google Scholar 

  10. Botstein, D., N. Segev, T. Stearns, M.A. Hoyt, J. Holden, & R.A. Kahn. 1988. Diverse biological functions of small GTP-binding proteins in yeast. Cold Spring Harbor Symposia on Quantitative Biology, Volume LIU: 629–636.

    Google Scholar 

  11. Moss, J., & M. Vaughan. 1995. Mini-review: Structure and function of ARF proteins: activators of cholera toxin and critical components of intracellular vesicular transport processes. J. Biol. Chem. 270: 12327–12330.

    Article  PubMed  CAS  Google Scholar 

  12. Bourne, H.R., D.A. Sanders, & F. McCormick. 1991. The GTPase superfamily: conserved structure and molecular mechanism. Nature 349: 117–127.

    Article  PubMed  CAS  Google Scholar 

  13. Makler, V, E. Cukierman, M. Rotman, A. Admon, & D. Cassel. 1995. ADP-ribosylation factor-directed GTPase-activating protein. J. Biol. Chem. 270: 5232–5237.

    Article  PubMed  CAS  Google Scholar 

  14. Cukierman, E., I. Humer, M. Rotman, D. Cassel. 1995. The ARF1 GTPase-activating protein: zinc finger motif and Golgi complex localization. Science 270: 1999–2002.

    Article  PubMed  CAS  Google Scholar 

  15. Tsai, S.-C, R. Adamik, J. Moss, & M. Vaughan. 1994. Identification of a brefeldin A-insensitive guanine nucleotide-exchange protein for ADP-ribosylation factor in bovine brain. Proc. Natl. Acad. Sci. USA 91: 3063–3066.

    Article  PubMed  CAS  Google Scholar 

  16. Tsai, S.-C, R. Adamik, J. Moss, & M. Vaughan. 1996. Purification and characterization of a guanine nucleotide-exchange protein for ADP-ribosylation factor from spleen cytosol. Proc. Natl. Acad. Sci. USA 93: 305–309.

    Article  PubMed  CAS  Google Scholar 

  17. Brown, H.A., S. Gutowski, C R. Moomaw, C. Slaughter, & P. Sternweis. 1993. ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity. Cell 75: 1137–1144.

    Article  PubMed  CAS  Google Scholar 

  18. Cockcroft, S., G.M.H. Thomas, A. Fensome, B. Geny, E. Cunningham, l. Gout, I. Hiles, N.F. Totty, O. Truong, & J.J. Hsuan. 1994. Phospholipase D: a downstream effector of ARF in granulocytes. Science 263: 523–526.

    Article  PubMed  CAS  Google Scholar 

  19. Massenburg, D., J.-S. Han, M. Liyanage, W.A. Patton, S.G. Rhee, J. Moss, & M. Vaughan. 1994. Activation of rat brain phospholipase D by ADP-ribosylation factors 1, 5, and 6: separation of ADP-ribosylation factor-dependent and oleate-dependent enzymes. Proc. Natl. Acad. Sci. USA 91: 11718–11722.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang, G.-F., W.A. Patton, F.-J.S. Lee, M. Liyanage, J.-S. Han, S.G. Rhee, J. Moss, & M. Vaughan. 1995. Different ARF domains are required for the activation of cholera toxin and phospholipase D. J. Biol. Chem. 270:21–24.

    Article  CAS  Google Scholar 

  21. Tamkun, J.W., R.A. Kahn, M. Kissinger, B.J. Brizuela, C Rulka, M.P. Scott, & J.A. Kennison. 1991. The arflike gene encodes an essential GTP-binding protein in Drosophila. Proc. Natl. Acad. Sci. USA 88: 3120–3124.

    Article  CAS  Google Scholar 

  22. Rothman, J.E., & F.T. Wieland. 1996. Protein sorting by transport vesicles. Science 272: 227–234.

    Article  PubMed  CAS  Google Scholar 

  23. Waters, M.G., T. Seraflni, & J.E. Rothman. 1991. ’Coatomer’: a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature 349: 248–251.

    Article  PubMed  CAS  Google Scholar 

  24. Liscovitch, M., V. Chalifa, P. Pertile, C-S. Chen, & L. C Cantley. 1994. Novel function of phosphatidylinositol 4,5-bisphosphate as a cofactor for brain membrane phospholipase D. J. Biol. Chem. 269: 21403–21406.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vaughan, M., Moss, J. (1997). Activation of Toxin ADP-Ribosyltransferases by the Family of ADP-Ribosylation Factors. In: Haag, F., Koch-Nolte, F. (eds) ADP-Ribosylation in Animal Tissues. Advances in Experimental Medicine and Biology, vol 419. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8632-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8632-0_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4652-4

  • Online ISBN: 978-1-4419-8632-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics