Skip to main content

Regulatory Role of Arginine-Specific Mono(ADP-Ribosyl)Transferase in Muscle Cells

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 419))

Abstract

Earlier we demonstrated that meta-iodobenzylguanidine (MIBG), a specific inhibitor of arginine mono-ADP-ribosylation blocks proliferation and differentiation of chick skeletal myogenic cells in culture (Exp. Cell Res., 1992, 201: 33-42). Membrane fractions from 4-day, myotube cultures of embryonic chick muscle cells were incubated with 32P-NAD+. Several proteins were labeled, but labeling of two bands of about 53 and 36 kDa appeared to be due to arginyl ADP-ribosylation. Immunoprecipitation with D3 monoclonal antibody to the intermediate filament protein desmin, SDS-PAGE and autoradiography demonstrated that the 53 kDa band contained desmin, and that this desmin is ADP-ribosylated by the endogenous arginine-specific mono(ADP-ribosyl)transferase (Exp. Cell Res.,1996, in press). Desmin is the muscle-specific intermediate filament protein, and it appears to be one of the first muscle-specific proteins expressed during terminal myogenic differentiation. We have examined whether desmin can be ADP-ribosylated in muscle cells by use of polyclonal antibodies for ADP-ribosylated arginyl residues. We have found that soluble desmin is present in 5-6 day myogenic cell cultures and that this desmin contains ADP-ribose, demonstrating that desmin is ADP-ribosylated in skeletal muscle cells. We also found that purified avian desmin contains antigenic material that reacts with these antibodies. In both cases, NaCl had no effect on the reactivity, but NH2OH did, which is consistent with an arginine-ADPR linkage. In summary, these results suggest that ADP-ribosylation is an important regulatory mechanism in differentiating muscle cells, and that the intermediate filament protein desmin is an important substrate for modification in muscle cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Farzaneh, R, R. Zalin, D., Brill, and Shall. 1982. DNA strand breaks and ADP-ribosyltransferase activation during cell differentiation. Nature 300: 362–366.

    Article  PubMed  CAS  Google Scholar 

  2. Duncan, M. R.,P. R. Rankin, R. L. King, M. K. Jacobson, & R. T. Dell’Orco. 1988. Stimulation of mono (ADP-ribosylation) by reduced extracellular calcium levels in human fibroblasts. J. Cell Physiol. 134: 161–165.

    Article  PubMed  CAS  Google Scholar 

  3. Soman, G., J. R. Mickelson, C. F. Louis, & D. J. Graves. 1984. NAD: guanidino group specific mono ADP-ribosyltransferase activity in skeletal muscle. Biochem. Biophys. Res. Commun. 120: 973–980.

    Article  PubMed  CAS  Google Scholar 

  4. Chang, Y., G. Soman, & D. J. Graves. 1986. Identification of an enzymatic activity that hydrolyzes proteinbound ADP-ribose in skeletal muscle. Biochem. Biophys. Res. Commun. 139: 932–939.

    Article  PubMed  CAS  Google Scholar 

  5. Kim, E.-S., & D. J. Graves. 1990. Development of a high-performance liquid chromatography assay method and characterization of adenosine diphosphate-ribosylarginine hydrolase in skeletal muscle. Anal. Biochem. 187:251–251.

    Article  PubMed  CAS  Google Scholar 

  6. Kharadia, S. V., T. W. Huiatt, H.-Y. Huang, J. E. Peterson, & D. J. Graves. 1992. Effect of an arginine-specific ADP-ribosyltransferase on differentiation of embryonic chick skeletal muscle cells in culture. Exp. Cell Res. 201: 31–42.

    Article  Google Scholar 

  7. Loesberg, C, H. Van Rooji, & L. A. Smets. 1990. Meta-iodobenzylguanidine (MIBG), a novel high-affinity substrate for Cholera toxin that interferes with cellular mono(ADP-ribosylation). Biochim. Biophys. Acta. 1037: 92–99.

    Article  PubMed  CAS  Google Scholar 

  8. Smets, L. A., C. Loesberg, M. Janssen, & H. Van Rooij. 1990. Intracellular inhibition of mono(ADP-ribosylation) by meta-iodobenzylguanidine:specificity, intracellular concentration and effects on glucocorticoid-mediated cell lysis. Biochim. Biophys. Acta 1054: 49–55.

    Article  PubMed  CAS  Google Scholar 

  9. Huang, H.-Y, H. Zhou, T. W. Huiatt, & D. J. Graves. 1996. Target proteins for arginine-specific mono(ADP-ribosyl)transferase in membrane fractions from chick skeletal muscle cells. Exp. Cell Res. in press.

    Google Scholar 

  10. Robson, R. M. 1989. Intermediate filaments. Curr. Opin. Cell Biol. 1: 36–43.

    Article  PubMed  CAS  Google Scholar 

  11. Fuchs, E., & K. Weber. 1994. Intermediate filaments: structure, dynamics, function, and disease. Annu. Rev. Biochem. 63: 345–382.

    Article  PubMed  CAS  Google Scholar 

  12. Lin, Z., M.-H. Lu, T. Schultheiss, J. Choi, S. Holtzer, C. DiLullo, D. A. Fischman, & H. Holtzer. 1994. Sequential appearance of muscle-specific proteins in myoblasts as a function of time after cell division: Evidence for a conserved myoblast differentiation program in skeletal muscle. Cell Motil. Cytoskel. 29: 1–19.

    Article  CAS  Google Scholar 

  13. Bennett, G. S., S. A. Fellini, Y. Toyama, & H. Holtzer. 1979. Redistribution of intermediate filament subunits during skeletal myogenesis and maturation in vitro. J. Cell Biol. 82: 577–5

    Article  PubMed  CAS  Google Scholar 

  14. Sjoberg, G., W.-Q. Jiang, N. R. Ringertz, U. Lendahl, & T. Sejersen. 1994. Colcalization of nestin and vimentin/desmin in skeletal muscle cells demonstrated by three-dimensional fluorescence digital imaging microscopy. Exp. Cell Res. 214: 447–458.

    Article  PubMed  CAS  Google Scholar 

  15. Huang, H.-Y, D. J. Graves, R. M. Robson, & T. W. Huiatt. 1993. ADP-ribosylation of the intermediate filament protein-desmin and inhibition of desmin assembly in vitro by muscle ADP-ribosyltransferase. Biochem. Biophys. Res. Commun. 197: 570–577.

    Article  PubMed  CAS  Google Scholar 

  16. Zhou, H., T. W. Huiatt, R. M. Robson, S. W. Sernett, & D. J. Graves. 1996. Characterization of ADP-ribosylation sites on desmin and restoration of desmin intermediate filament assembly by de-ADP-ribosylation. Arch. Biochem. Biophys. submitted for publication.

    Google Scholar 

  17. Payne, D. M., E. L. Jacobson, J. Moss, & M. K. Jacobson. 1985. Modification of proteins by mono(ADPribosylation) in vivo. Biochemistiy 24: 7450–7459.

    Article  Google Scholar 

  18. Fuller, J. C, Jr., S. L. Nissen, & T. W. Huiatt. 1993. Use of 18O-labeled leucine and phenylalanine to measure protein turnover in muscle cell cultures and possible futile cycling during aminoacylation. Biochem. J. 294: 427–433.

    PubMed  CAS  Google Scholar 

  19. Isaacs, W. B., R. K. Cook, J. C. Van Atta, C. M. Redmond, & A. B. Fulton. 1989. Assembly of vimentin in cultured cells varies with cell type. J. Biol. Chem. 264: 17953–17960.

    PubMed  CAS  Google Scholar 

  20. Danto, S. I., & D. A. Fischman. 1984. Immunocytochemical analysis of intermediate filaments in embryonic heart cells with monoclonal antibodies to desmin. J. Cell Biol. 98: 2170–2191.

    Article  Google Scholar 

  21. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.

    Google Scholar 

  22. Huiatt, T. W., R. M. Robson, N. Arakawa, & M. H. Stromer. 1980. Desmin from avian smooth muscle. Purification and partial characterization. J. Biol. Chem. 255: 6981–6989.

    PubMed  CAS  Google Scholar 

  23. Harlow, E., & Lane, D. 1988. Antibodies, a Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  24. McMahon, K. K., C. J. Schwab, K. J. Piron, Colville, & A. T. Fullerton. 1996. Detection of endogenous mono-ADP-ribosylated proteins via anti-ADP-ribosylarginine immunoreactivity. Manuscript in preparation.

    Google Scholar 

  25. Zolkiewska, A., & J. Moss. 1993. Integrin a7 as substrate for a glycosylphosphatidylinositol-anchored ADP-ribosyltransferase on the surface of skeletal muscle cells.J. Biol. Chem. 268: 25273–25276.

    PubMed  CAS  Google Scholar 

  26. Zolkiewska, A., & J. Moss. 1995. Processing of ADP-ribosylated integrin a7 in skeletal muscle myotubes J. Biol. Chem. 270: 9227–9233.

    Article  PubMed  CAS  Google Scholar 

  27. Reimer, K. H., P. Presek, B. Boschek, & K. Aktories. 1987. Botulinum C2 toxin ADP-ribosylates actin and disorganizes the microfilament network in intact cells. Ew: J. Cell Biol. 43: 134–140.

    Google Scholar 

  28. Wiegers, W., I. Just, H. Muller, A. Hellwig, P. Traub, & K. Aktories. 1991. Alteration of cytoskeleton of mammalian cells cultured in vitro by Clostridium botulinum C2 toxin and C3 ADP-ribosyltransferase. Ew: J. Cell Biol. 54: 237–245.

    CAS  Google Scholar 

  29. Vandekerkhove, J., B. Schering, M. Barmann, & K. Aktories. 1987. Clostridium perfringens iota toxin ADP-ribosylates skeletal muscle actin in arginine 177. FEBS Lett. 225: 48–52.

    Article  Google Scholar 

  30. Vandekerkhove, J., B. Schering, M. Barmann, & K. Aktories. 1988. Botulinum C2 toxin ADP-ribosylates cytoplasmic p/y-actin in arginine 177. J. Biol. Chem. 263: 696–700.

    Google Scholar 

  31. Kabsch, W., H. G. Mannherz, D. Suck, E. F. Pai, & K. C. Holmes. 1990. Atomic structure of the actin: DNase I complex. Nature 347: 37–44.

    Article  PubMed  CAS  Google Scholar 

  32. Holmes, K. C, D. Popp, W. Gebhard and W. Kabsch. 1990. Atomic model of the actin filament. Nature 347: 44–49.

    Article  PubMed  CAS  Google Scholar 

  33. Terashima, M., K. Mishima, K. Yamada, M. Tsuchiya, T. Wakutani, & M. Shimoyama. 1992. ADP-ribosylation of actins by arginine-specific ADP-ribosyltransferase purified from chicken heterophils. Eur: J. Biochem. 204: 305–311.

    Article  CAS  Google Scholar 

  34. Terashima, M., C. Yamamori, & M. Shimoyama. 1995. ADP-ribosylation of Arg 28 and Arg 206 on the actin molecule by chicken ADP-ribosyltransferase. Eur. J. Biochem. 231: 242–249.

    Article  PubMed  CAS  Google Scholar 

  35. Geisler, N., & K. Weber. 1982. The amino acid sequence of chicken muscle desmin provides a common structural model for intermediate filament proteins. EMBO J. 1:1649–1656.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Graves, D.J. et al. (1997). Regulatory Role of Arginine-Specific Mono(ADP-Ribosyl)Transferase in Muscle Cells. In: Haag, F., Koch-Nolte, F. (eds) ADP-Ribosylation in Animal Tissues. Advances in Experimental Medicine and Biology, vol 419. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8632-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8632-0_40

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4652-4

  • Online ISBN: 978-1-4419-8632-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics