Regulatory Role of Arginine-Specific Mono(ADP-Ribosyl)Transferase in Muscle Cells

  • Donald J. Graves
  • Ted W. Huiatt
  • Hao Zhou
  • Hui-Yi Huang
  • Suzanne W. Sernett
  • Richard M. Robson
  • Kathryn K. McMahon
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 419)


Earlier we demonstrated that meta-iodobenzylguanidine (MIBG), a specific inhibitor of arginine mono-ADP-ribosylation blocks proliferation and differentiation of chick skeletal myogenic cells in culture (Exp. Cell Res., 1992, 201: 33-42). Membrane fractions from 4-day, myotube cultures of embryonic chick muscle cells were incubated with 32P-NAD+. Several proteins were labeled, but labeling of two bands of about 53 and 36 kDa appeared to be due to arginyl ADP-ribosylation. Immunoprecipitation with D3 monoclonal antibody to the intermediate filament protein desmin, SDS-PAGE and autoradiography demonstrated that the 53 kDa band contained desmin, and that this desmin is ADP-ribosylated by the endogenous arginine-specific mono(ADP-ribosyl)transferase (Exp. Cell Res.,1996, in press). Desmin is the muscle-specific intermediate filament protein, and it appears to be one of the first muscle-specific proteins expressed during terminal myogenic differentiation. We have examined whether desmin can be ADP-ribosylated in muscle cells by use of polyclonal antibodies for ADP-ribosylated arginyl residues. We have found that soluble desmin is present in 5-6 day myogenic cell cultures and that this desmin contains ADP-ribose, demonstrating that desmin is ADP-ribosylated in skeletal muscle cells. We also found that purified avian desmin contains antigenic material that reacts with these antibodies. In both cases, NaCl had no effect on the reactivity, but NH2OH did, which is consistent with an arginine-ADPR linkage. In summary, these results suggest that ADP-ribosylation is an important regulatory mechanism in differentiating muscle cells, and that the intermediate filament protein desmin is an important substrate for modification in muscle cells.


Skeletal Muscle Cell Myogenic Cell Muscle Cell Culture Antigenic Material Cell BioI 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Farzaneh, R, R. Zalin, D., Brill, and Shall. 1982. DNA strand breaks and ADP-ribosyltransferase activation during cell differentiation. Nature 300: 362–366.PubMedCrossRefGoogle Scholar
  2. 2.
    Duncan, M. R.,P. R. Rankin, R. L. King, M. K. Jacobson, & R. T. Dell’Orco. 1988. Stimulation of mono (ADP-ribosylation) by reduced extracellular calcium levels in human fibroblasts. J. Cell Physiol. 134: 161–165.PubMedCrossRefGoogle Scholar
  3. 3.
    Soman, G., J. R. Mickelson, C. F. Louis, & D. J. Graves. 1984. NAD: guanidino group specific mono ADP-ribosyltransferase activity in skeletal muscle. Biochem. Biophys. Res. Commun. 120: 973–980.PubMedCrossRefGoogle Scholar
  4. 4.
    Chang, Y., G. Soman, & D. J. Graves. 1986. Identification of an enzymatic activity that hydrolyzes proteinbound ADP-ribose in skeletal muscle. Biochem. Biophys. Res. Commun. 139: 932–939.PubMedCrossRefGoogle Scholar
  5. 5.
    Kim, E.-S., & D. J. Graves. 1990. Development of a high-performance liquid chromatography assay method and characterization of adenosine diphosphate-ribosylarginine hydrolase in skeletal muscle. Anal. Biochem. 187:251–251.PubMedCrossRefGoogle Scholar
  6. 6.
    Kharadia, S. V., T. W. Huiatt, H.-Y. Huang, J. E. Peterson, & D. J. Graves. 1992. Effect of an arginine-specific ADP-ribosyltransferase on differentiation of embryonic chick skeletal muscle cells in culture. Exp. Cell Res. 201: 31–42.CrossRefGoogle Scholar
  7. 7.
    Loesberg, C, H. Van Rooji, & L. A. Smets. 1990. Meta-iodobenzylguanidine (MIBG), a novel high-affinity substrate for Cholera toxin that interferes with cellular mono(ADP-ribosylation). Biochim. Biophys. Acta. 1037: 92–99.PubMedCrossRefGoogle Scholar
  8. 8.
    Smets, L. A., C. Loesberg, M. Janssen, & H. Van Rooij. 1990. Intracellular inhibition of mono(ADP-ribosylation) by meta-iodobenzylguanidine:specificity, intracellular concentration and effects on glucocorticoid-mediated cell lysis. Biochim. Biophys. Acta 1054: 49–55.PubMedCrossRefGoogle Scholar
  9. 9.
    Huang, H.-Y, H. Zhou, T. W. Huiatt, & D. J. Graves. 1996. Target proteins for arginine-specific mono(ADP-ribosyl)transferase in membrane fractions from chick skeletal muscle cells. Exp. Cell Res. in press.Google Scholar
  10. 10.
    Robson, R. M. 1989. Intermediate filaments. Curr. Opin. Cell Biol. 1: 36–43.PubMedCrossRefGoogle Scholar
  11. 11.
    Fuchs, E., & K. Weber. 1994. Intermediate filaments: structure, dynamics, function, and disease. Annu. Rev. Biochem. 63: 345–382.PubMedCrossRefGoogle Scholar
  12. 12.
    Lin, Z., M.-H. Lu, T. Schultheiss, J. Choi, S. Holtzer, C. DiLullo, D. A. Fischman, & H. Holtzer. 1994. Sequential appearance of muscle-specific proteins in myoblasts as a function of time after cell division: Evidence for a conserved myoblast differentiation program in skeletal muscle. Cell Motil. Cytoskel. 29: 1–19.CrossRefGoogle Scholar
  13. 13.
    Bennett, G. S., S. A. Fellini, Y. Toyama, & H. Holtzer. 1979. Redistribution of intermediate filament subunits during skeletal myogenesis and maturation in vitro. J. Cell Biol. 82: 577–5PubMedCrossRefGoogle Scholar
  14. 14.
    Sjoberg, G., W.-Q. Jiang, N. R. Ringertz, U. Lendahl, & T. Sejersen. 1994. Colcalization of nestin and vimentin/desmin in skeletal muscle cells demonstrated by three-dimensional fluorescence digital imaging microscopy. Exp. Cell Res. 214: 447–458.PubMedCrossRefGoogle Scholar
  15. 15.
    Huang, H.-Y, D. J. Graves, R. M. Robson, & T. W. Huiatt. 1993. ADP-ribosylation of the intermediate filament protein-desmin and inhibition of desmin assembly in vitro by muscle ADP-ribosyltransferase. Biochem. Biophys. Res. Commun. 197: 570–577.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhou, H., T. W. Huiatt, R. M. Robson, S. W. Sernett, & D. J. Graves. 1996. Characterization of ADP-ribosylation sites on desmin and restoration of desmin intermediate filament assembly by de-ADP-ribosylation. Arch. Biochem. Biophys. submitted for publication.Google Scholar
  17. 17.
    Payne, D. M., E. L. Jacobson, J. Moss, & M. K. Jacobson. 1985. Modification of proteins by mono(ADPribosylation) in vivo. Biochemistiy 24: 7450–7459.CrossRefGoogle Scholar
  18. 18.
    Fuller, J. C, Jr., S. L. Nissen, & T. W. Huiatt. 1993. Use of 18O-labeled leucine and phenylalanine to measure protein turnover in muscle cell cultures and possible futile cycling during aminoacylation. Biochem. J. 294: 427–433.PubMedGoogle Scholar
  19. 19.
    Isaacs, W. B., R. K. Cook, J. C. Van Atta, C. M. Redmond, & A. B. Fulton. 1989. Assembly of vimentin in cultured cells varies with cell type. J. Biol. Chem. 264: 17953–17960.PubMedGoogle Scholar
  20. 20.
    Danto, S. I., & D. A. Fischman. 1984. Immunocytochemical analysis of intermediate filaments in embryonic heart cells with monoclonal antibodies to desmin. J. Cell Biol. 98: 2170–2191.CrossRefGoogle Scholar
  21. 21.
    Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Google Scholar
  22. 22.
    Huiatt, T. W., R. M. Robson, N. Arakawa, & M. H. Stromer. 1980. Desmin from avian smooth muscle. Purification and partial characterization. J. Biol. Chem. 255: 6981–6989.PubMedGoogle Scholar
  23. 23.
    Harlow, E., & Lane, D. 1988. Antibodies, a Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  24. 24.
    McMahon, K. K., C. J. Schwab, K. J. Piron, Colville, & A. T. Fullerton. 1996. Detection of endogenous mono-ADP-ribosylated proteins via anti-ADP-ribosylarginine immunoreactivity. Manuscript in preparation.Google Scholar
  25. 25.
    Zolkiewska, A., & J. Moss. 1993. Integrin a7 as substrate for a glycosylphosphatidylinositol-anchored ADP-ribosyltransferase on the surface of skeletal muscle cells.J. Biol. Chem. 268: 25273–25276.PubMedGoogle Scholar
  26. 26.
    Zolkiewska, A., & J. Moss. 1995. Processing of ADP-ribosylated integrin a7 in skeletal muscle myotubes J. Biol. Chem. 270: 9227–9233.PubMedCrossRefGoogle Scholar
  27. 27.
    Reimer, K. H., P. Presek, B. Boschek, & K. Aktories. 1987. Botulinum C2 toxin ADP-ribosylates actin and disorganizes the microfilament network in intact cells. Ew: J. Cell Biol. 43: 134–140.Google Scholar
  28. 28.
    Wiegers, W., I. Just, H. Muller, A. Hellwig, P. Traub, & K. Aktories. 1991. Alteration of cytoskeleton of mammalian cells cultured in vitro by Clostridium botulinum C2 toxin and C3 ADP-ribosyltransferase. Ew: J. Cell Biol. 54: 237–245.Google Scholar
  29. 29.
    Vandekerkhove, J., B. Schering, M. Barmann, & K. Aktories. 1987. Clostridium perfringens iota toxin ADP-ribosylates skeletal muscle actin in arginine 177. FEBS Lett. 225: 48–52.CrossRefGoogle Scholar
  30. 30.
    Vandekerkhove, J., B. Schering, M. Barmann, & K. Aktories. 1988. Botulinum C2 toxin ADP-ribosylates cytoplasmic p/y-actin in arginine 177. J. Biol. Chem. 263: 696–700.Google Scholar
  31. 31.
    Kabsch, W., H. G. Mannherz, D. Suck, E. F. Pai, & K. C. Holmes. 1990. Atomic structure of the actin: DNase I complex. Nature 347: 37–44.PubMedCrossRefGoogle Scholar
  32. 32.
    Holmes, K. C, D. Popp, W. Gebhard and W. Kabsch. 1990. Atomic model of the actin filament. Nature 347: 44–49.PubMedCrossRefGoogle Scholar
  33. 33.
    Terashima, M., K. Mishima, K. Yamada, M. Tsuchiya, T. Wakutani, & M. Shimoyama. 1992. ADP-ribosylation of actins by arginine-specific ADP-ribosyltransferase purified from chicken heterophils. Eur: J. Biochem. 204: 305–311.CrossRefGoogle Scholar
  34. 34.
    Terashima, M., C. Yamamori, & M. Shimoyama. 1995. ADP-ribosylation of Arg 28 and Arg 206 on the actin molecule by chicken ADP-ribosyltransferase. Eur. J. Biochem. 231: 242–249.PubMedCrossRefGoogle Scholar
  35. 35.
    Geisler, N., & K. Weber. 1982. The amino acid sequence of chicken muscle desmin provides a common structural model for intermediate filament proteins. EMBO J. 1:1649–1656.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Donald J. Graves
    • 1
  • Ted W. Huiatt
    • 2
  • Hao Zhou
    • 1
  • Hui-Yi Huang
    • 1
  • Suzanne W. Sernett
    • 2
  • Richard M. Robson
    • 2
  • Kathryn K. McMahon
    • 3
  1. 1.Department of Biochemistry and BiophysicsIowa State UniversityAmes, IowaUSA
  2. 2.Muscle Biology Group Departments of Animal Science and of Biochemistry and BiophysicsIowa State UniversityAmes, IowaUSA
  3. 3.Department of Pharmacology Health Science Center School of MedicineTexas Tech UniversityLubbockUSA

Personalised recommendations