Skip to main content

The α7 Integrin as a Target Protein for Cell Surface Mono-ADP-Ribosylation in Muscle Cells

  • Chapter
ADP-Ribosylation in Animal Tissues

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 419))

Abstract

A membrane-associated arginine-specific mono-ADP-ribosyltransferase was purified 215,000-fold from rabbit skeletal muscle and its gene was isolated from a skeletal muscle cDNA library. The enzyme was a glycosylphosphatidyl-inositol-linked protein, present on the surface of differentiated skeletal muscle myoblasts (myotubes). Following incubation of cultured, intact myotubes with [adenylate-32P]NAD and analysis by SDS-PAGE, a major radiolabeled protein of 97/140 kDa (reduced/ nonreduced conditions) was observed. It was identified as integrin a 7 based on its size, binding to a laminin affinity column, immunoprecipitation with a monoclonal antibody, and partial amino acid sequencing.

Since ADP-ribosylarginine hydrolase, the enzyme responsible for cleavage of the ADP-ribosylarginine bond and a component with the transferase of a putative ADP-ribosylation cycle, is cytosolic, whereas the transferase is attached via a GPI-anchor to the cell surface, the processing of ADP-ribosylated integrin a7 was investigated. 32P label was rapidly removed from [32P]ADP-ribosylated integrin a7, a process inhibited by free ADP-ribose or p-nitrophenylthymidine-5’-monophosphate, alternative substrates for 5′-nucleotide phosphodiesterase. The processed integrin a7 was not susceptible to subsequent ADP-ribosylation, although the amount of surface integrin a7 remained constant. During the processing, no loss of label was observed from integrin a7 radiolabeled with [14C]NAD, containing 14C in the nicotinamide-proximal ribose, consistent with a degradation of the ADP-ribose moiety by a cell surface 5′-nucleotide phosphodiesterase. Thus, cell surface ADP-ribosylation, in contrast to intracellular ADP-ribosylation, is not readily reversed by the presently known ADP-ribosylarginine hydrolase and seems to operate outside the postulated ADP-ribosylation cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zolkiewska, A., M. S. Nightingale, and J. Moss. 1992. Molecular characterization of NAD:arginine ADP-ribosyltransferase from rabbit skeletal muscle. Proc. Natl. Acad. Sci. USA. 89: 11352–11356.

    Article  PubMed  CAS  Google Scholar 

  2. Zolkiewska, A., and J. Moss. 1993. Integrin α7 as substrate for a glycosylphospha-tidylinositol-anchored ADP-ribosyltransferase on the surface of skeletal muscle cells. J. Biol. Chem. 268: 25273–25276.

    PubMed  CAS  Google Scholar 

  3. Okazaki, I. J., A. Zolkiewska, M. S. Nightingale, and J. Moss. 1994. Immunological and structural conservation of mammalian skeletal muscle glycosylphosphatidyl-inositol-linked ADP-ribosyltransferases. Biochemistry. 33: 12828–12836.

    Article  PubMed  CAS  Google Scholar 

  4. Tsuchiya, M., N. Hara, K. Yamada, H. Osago, and M. Shimoyama. 1994. Cloning and expression of cDNA for arginine-specific ADP-ribosyltransferase from chicken bone marrow cells. J. Biol. Chem. 269: 27451–27457.

    PubMed  CAS  Google Scholar 

  5. T. Davis, and S. Shall. 1995. Sequence of a chicken erythroblast mono(ADP-ribosyl)transferase-encoding gene and its upstream region. Gene. 164:311–312.

    Article  Google Scholar 

  6. R. O. Hynes. 1992. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 69: 11–25.

    Article  Google Scholar 

  7. E. A. Clark, and J. S. Brugge. 1995. Integrins and signal transduction pathways: the road taken. Science. 268: 233–239.

    Article  Google Scholar 

  8. Rosales, C, V. O’Brien, L. Kornberg, and R. Juliano. 1995. Signal transduction by cell adhesion receptors. Biochim. Biophys. Ada. 1242: 77–98.

    Google Scholar 

  9. von der Mark, H., J. Durr, A. Sonnenberg, K. von der Mark, R. Deutzmann, and S. L. Goodman. 1991. Skeletal myoblasts utilize a novel β1-series integrin and not α6βl for binding to the E8 and T8 fragments of laminin. J. Biol. Chem. 266: 23593–23601.

    PubMed  Google Scholar 

  10. Song, W. K., W. Wang, R. F. Foster, D. A. Bielser, and S. J. Kaufman. 1992. H36-α7 is a novel integrin alpha chain that is developmentally regulated during skeletal myogenesis. J. Cell Biol. 117: 643–657.

    Article  PubMed  CAS  Google Scholar 

  11. Ziober, B. L., M. P. Vu, N. Waleh, J. Crawford, C.-S. Lin, and R. H. Kramer. 1993. Alternative extracellular and cytoplasmic domains of the integrin α7 subunit are differentially expressed during development. J. Biol. Chem. 268: 26773–26783.

    PubMed  CAS  Google Scholar 

  12. Collo, G., L. Starr, and V. Quaranta. 1993. Anew isoform of the laminin receptor integrin α7(31 is developmentally regulated in skeletal muscle. J. Biol. Chem. 268: 19019–19024.

    PubMed  CAS  Google Scholar 

  13. Song, W. K., W. Wang, H. Sato, D. A. Bielser, and S. J. Kaufman. 1993. Expression of α7 integrin cytoplasmic domains during skeletal muscle development: alternate forms, conformational change, and homologies with serine/threonine kinases and tyrosine phosphatases. J. Cell Sci. 106: 1139–1152.

    PubMed  CAS  Google Scholar 

  14. Udenfriend, S., and K. Kodukula. 1995. How glycosylphosphatidylinositol-anchored membrane proteins are made. Annu. Rev. Biochem. 64: 563–591.

    Article  PubMed  CAS  Google Scholar 

  15. Tartakoff, A. M., and N. Singh. 1992. How to make a glycoinositol phospholipid anchor. Trends in Biochem. Sci. 17:.470–473.

    Article  CAS  Google Scholar 

  16. Zolkiewska, A., and J. Moss. 1995. Processing of ADP-ribosylated integrin a7 in skeletal muscle myotubes. J. Biol. Chem. 270: 9227–9233.

    Article  PubMed  CAS  Google Scholar 

  17. Williamson, K. C, and J. Moss. 1990. Mono-ADP-ribosyltransferases and ADP-ribosylarginine Hydrolases: a Mono-ADP-ribosylation cycle in animal cells. In ADP-Ribosylating Toxins and G proteins: Insights into Signal Transduction: 493–510.

    Google Scholar 

  18. Moss, J., S. J. Stanley, M. S. Nightingale, J. J. Murtagh, L. Monaco, K. Mishima, H.-C. Chen, K. C. Williamson, and S.-C. Tsai. 1992. Molecular and immunological characterization of ADP-ribosylarginine hydrolases. J. Biol. Chem. 267: 10481–10488.

    PubMed  CAS  Google Scholar 

  19. Echtermeyer, F., S. Schöber, E. Pöschl, H. von der Mark, and K. von der Mark. 1996. Specific induction of cell motility on laminin by α7 integrin. J. Biol. Chem. 271: 2071–2075.

    Article  PubMed  CAS  Google Scholar 

  20. Yao, C.-C, and R. H. Kramer. 1996. The role of α7 integrin in myoblast motility and myogenesis. J. Dent. Res. 75 (IADR Abstracts): 266.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zolkiewska, A., Moss, J. (1997). The α7 Integrin as a Target Protein for Cell Surface Mono-ADP-Ribosylation in Muscle Cells. In: Haag, F., Koch-Nolte, F. (eds) ADP-Ribosylation in Animal Tissues. Advances in Experimental Medicine and Biology, vol 419. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8632-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8632-0_39

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4652-4

  • Online ISBN: 978-1-4419-8632-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics