Skip to main content

Endogenous ADP-Ribosylation of Phosphoprotein B-50/GAP-43 and other Neuronal Substrates

  • Chapter
ADP-Ribosylation in Animal Tissues

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 419))

Abstract

Numerous brain-localized proteins are known to be subject to a regulatory ADP-ribosylation reaction. Such proteins whose functions have been studied extensively include tubulin, a cytoskeletal protein involved in the growth of axons and dendrites(1), actin, another cytoskeletal protein involved in neuron motility and receptor organization (2), and the family of G-proteins performing regulatory functions in cell signal transduction mechanisms 3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Scaife, R.M, L. Wilson & D.L. Purich. 1991. Microtubule protein ADP-ribosylation in vitro leads to assembly inhibition and rapid depolymerization. Biochem 31: 310–316.

    Google Scholar 

  2. Aktories, K., & A. Wegner. 1992. Mechanisms of the cytopathic action of actin-ADP-ribosylating toxins. Mol. Micwbiol. 6: 2905–2908.

    Article  CAS  Google Scholar 

  3. Williamson, K.C. and J. Moss. 1990. Mono-ADP-ribosyltransferases and ADP-ribosylarginine Hydrolases: A mono-ADP-ribosylation Cycle in Animal Cells. In: Moss, J., & M. Vaughan (eds): ADP-ribosylating Toxins and G Proteins: Insights into Signal Transductions, American Society for Microbiology, Washington, D.C., pp. 493–510.

    Google Scholar 

  4. Zwiers, H., V.M. Wiegant, P. Schotman & W.H. Gispen. 1978. ACTH-induced inhibition of endogenous rat brain protein phosphorylation in vitro: structure-activity. Neurochem. Res. 3: 455–463.

    Article  PubMed  CAS  Google Scholar 

  5. Zwiers, H., P. Schotman & W.H. Gispen. 1980. Purification and some characteristics of an ACTH-sensitive sensitive protein kinase and its substrate protein. J. Neurochem. 34: 1689–1699.

    Article  PubMed  CAS  Google Scholar 

  6. Zwiers, H., & P.J. Coggins. 1991. B-50 structure, processing and interaction with ACTH. Progress in Brain Research. 89: 3–16.

    Article  PubMed  CAS  Google Scholar 

  7. Skene, J.H.P., & M. Willard. 1981. Changes in Axonally transported proteins during Axon Regeneration in Toad Retinal Ganglion Cells. J. Cell Biology. 89: 86–95.

    Article  CAS  Google Scholar 

  8. Andreasen, T.J., C.W. Luetje, W. Heideman & D.R. Storm. 1983. Purification of a novel calmodulin binding protein from bovine cerebral cortex membranes. Biochemistry. 22: 4615–4618.

    Article  PubMed  CAS  Google Scholar 

  9. Chan, S.Y., K. Murakami & A. Routtenberg. 1986. Phosphoprotein Fl: Purification and characterisation of a brain kinase C substrate related to plasticity. J. Neurosci. 6: 3618–3627.

    PubMed  CAS  Google Scholar 

  10. Goslin, K., D.J. Schreyer, J.H.P. Skene & G.A. Banker. 1988. Development of neuronal polarity: GAP-43 distinguishes axonal from dendritic growth cones. Nature. 336: 672–674.

    Article  PubMed  CAS  Google Scholar 

  11. Gispen, W.H., J.J.M. Leunissen, A.B. Oestreicher, A.J. Verkleij & H. Zwiers. 1985. Presynaptic localization of B-50 phosphoprotein: the ACTH-sensitive protein kinase substrate involved in rat brain phosphoinositide metabolism. Brain Res. 328: 381–385.

    Article  PubMed  CAS  Google Scholar 

  12. Strittmatter, S.M., M. Igarashi & M.C. Fishman. 1994. GAP-43 amino terminal peptides modulate growth cone morphology and neurite outgrowth. J. Neurosci. 14: 5503–5513.

    PubMed  CAS  Google Scholar 

  13. Strittmatter, S.M., C. Fankhauser, P.C. Huang, H. Mashimo & M.C. Fishman. 1995. Neuronal path-finding is abnormal in mice lacking the neuronal growth cone protein GAP-43. Cell. 80: 445–452.

    Article  PubMed  CAS  Google Scholar 

  14. Coggins, P.J., & H. Zwiers. 1991. B-50 (GAP-43): Biochemistry and Functional Neurochemistry of a Neuron-Specific Phosphoprotein. Journal of Neurochemistry. 56: 1095–1106.

    Article  PubMed  CAS  Google Scholar 

  15. Alexander, K.A., B.M. Cimler, K.E. Meier, & D.R. Storm. 1987. Regulation of calmodulin binding to P-57. J. Biol. Chem. 262: 6108–6113.

    PubMed  CAS  Google Scholar 

  16. Strittmatter, S.M., D. Valenzuela, T.E. Kennedy, E.J. Neer & M.C. Fishman. 1990. Go is a major growth cone protein subject to regulation by GAP-43. Nature. 344: 836–841.

    Article  PubMed  CAS  Google Scholar 

  17. Coggins, P.J., D.D. Mclntyre, H.J. Vogel, & H. Zwiers. 1989. Neuronal protein B-50: a proton nuclearmagnetic-resonance study. Biochemical Society Transactions 629th Meeting, London. 17: 785–787.

    CAS  Google Scholar 

  18. Zhang, M. & H.J. Vogel. Nuclear magnetic resonance studies of the structure of B50/neuromodulin and its interaction with calmodulin. Biochem. Cell Biol. 72: 109–116.

    Google Scholar 

  19. Coggins, P.J., K. McLean, A. Nagy & H. Zwiers. 1993. ADP-ribosylation of the neuronal phosphoprotein B-50/GAP-43. J. Neurochem. 60: 368–371.

    Article  PubMed  CAS  Google Scholar 

  20. Philbert, K. & H. Zwiers. 1995. Evidence for multi-site ADP-ribosylation of neuronal phosphoprotein B-50/GAP-43. Mol: Cell. Biochem. 149: 183–190.

    Article  Google Scholar 

  21. Zwiers, H., & K.D. Philbert. 1996. ADP-ribosylation. In: Neuromethods: Posttranslational Modifications: Techniques and Protocols. Boulton, A.A., G.B. Baker & H.C. Hemmings, Eds. Humana Press Inc; Totowa, N.J. in press.

    Google Scholar 

  22. Zwiers, H., K. McLean, K. Philbert & K.A. Sharkey. 1996. A Novel Calmodulin Binding Protein H-20 Related to B-50/GAP43 and BICKS/RC2 is Primarily Located in Nervous Tissue, and is Highly Enriched in Myelin. J. Neurochem. 66: 27th ASN Meeting, Philadelphia, PA. S5A.

    Google Scholar 

  23. Coggins, P.J., K. McLean & H. Zwiers. 1993. Neurogranin, a B-50/GAP-43-immunoreactive C-kinase substrate (BICKS), is ADP-ribosylated. FEBS. 335: 109–113.

    Article  CAS  Google Scholar 

  24. Chao, D., D.L. Severson, H. Zwiers & M.D. Hollenberg. 1995. Radiolabelling of bovine myristoylated alanine-rich protein kinase C substrate (MARCKS) in an ADP-ribosylation reaction. Biochem. Cell Biol. 72:391–396.

    Article  Google Scholar 

  25. Coggins, P.J. & H. Zwiers. 1989. Evidence for a single protein kinase C-mediated phosphorylation site in rat brain protein B-50. J. Neurochem. 53: 1895–1901.

    Article  PubMed  CAS  Google Scholar 

  26. Palkiewicz, P., H. Zwiers & F.L. Lorscheider. 1994. ADP-ribosylation of brain neuronal proteins is altered by in vitro and in vivo exposure to inorganic mercury. J. Neurochem. 62: 2049–2052.

    Article  PubMed  CAS  Google Scholar 

  27. Skene, J.H.P. & I. Virag. 1989. Posttranslational membrane attachment and dynamic fatty acylation of a neuronal growth cone protein, GAP-43. J. Cell Biol. 108: 613–624.

    Article  PubMed  CAS  Google Scholar 

  28. Zuber, M.X., S.M. Strittmatter & M.C. Fishman. 1989. A membrane-targeting signal in the amino terminus of the neuronal protein GAP-43. Nature. 341: 345–348.

    Article  PubMed  CAS  Google Scholar 

  29. Milligan, G., M. Parenti & A.I. Magee. 1995. The dynamic role of palmitoylation in signal transduction. TIBS. 20: 181–186.

    PubMed  CAS  Google Scholar 

  30. Linder, M.E., C. Kleuss, & S.M. Mumby. 1995. Palmitoylation of G-Protein a Subunits. Methods in Enzymology. 250: 314–329.

    Article  PubMed  CAS  Google Scholar 

  31. Saxty, B.A. & S. vanHeyningen. 1995. The Purification of a Cysteine-Dependent NAD+ Glycohydrolase Activity from Bovine Erythrocytes and Evidence that it Exhibits a Novel ADP-ribosyltransferase Activity. Biochem. 310:931–937.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zwiers, H., Hollenberg, M.D., McLean, K.N., Philibert, K.D. (1997). Endogenous ADP-Ribosylation of Phosphoprotein B-50/GAP-43 and other Neuronal Substrates. In: Haag, F., Koch-Nolte, F. (eds) ADP-Ribosylation in Animal Tissues. Advances in Experimental Medicine and Biology, vol 419. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8632-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8632-0_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4652-4

  • Online ISBN: 978-1-4419-8632-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics