Skip to main content

Using Secondary Structure Predictions and Site-Directed Mutagenesis to Identify and Probe the Role of Potential Active Site Motifs in the RT6 Mono(ADP-Ribosyl)Transferases

  • Chapter
ADP-Ribosylation in Animal Tissues

Abstract

The RT6 T cell mono(ADP-ribosyl)transferases are expressed as GPI-anchored membrane proteins by mature T lymphocytes. We performed secondary structure prediction analyses of RT6 with a profile based neural network system based on multiple alignments of RT6 with other vertebrate mono(ADP-ribosyl)transferases (mADPRTs). The results reveal a linear order of predicted ßsheets/αhelix in RT6 that are quite similar to those in the catalytic subunit of the four known crystal structures of mono-ADP-ribosylating bacterial toxins. Recognizable amino acid similarities occur throughout the region of predicted structural homology to the bacterial toxins. Three residues which have been shown to be important for catalysis in bacterial toxins (e.g. R9, S52 and E129 in pertussis toxin) occur in a similar context also in RT6 (R126, S147 and E189). We have mutated these residues in RT6 by site-directed mutagenesis. The RT6 mutants exhibit remarkably similar alterations in enzymatic phenotype as those reported for mutations of the proposed analagous residues in bacterial toxins. These results support the hypothesis that eu- and procaryotic mADPRTs share a common fold and have a common ancestry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allured, V. S., R. J. Collier, S. F. Carrol & D. B. McKay. 1985. Structure of exotoxin A of Pseudomonas aeruginosa at 3.0 Angstrom resolution. Proc. Natl. Acad. Sci. USA 83: 1320–1324.

    Article  Google Scholar 

  2. Choe, S., M. J. Bennett, G. Fujii, P. M. Curmi, K. A. Kantardjieff, R. J. Collier & D. Eisenberg. 1992. The crystal structure of diphtheria toxin. Nature 357: 216–222.

    Article  PubMed  CAS  Google Scholar 

  3. Sixma, T. K., S. E. Pronk, K. H. Kalk, E. S. Wartna, B. van Zanten, B. Witholt & W. G. Hol. 1991. Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature 351: 371–377.

    Article  PubMed  CAS  Google Scholar 

  4. Stein, P., A. Boodhoo, G. D. Armstrong, S. A. Cockle, M. H. Klein & R. J. Read. 1994. The crystal structure of pertussis toxin. Structure. Curt: Biol. 2: 45–57.

    CAS  Google Scholar 

  5. Domenighini, M., C. Magagnoli, M. Pizza & R. Rappuoli. 1994. Common features of the NAD-binding and catalytic site of ADP-ribosylating toxins. Mol. Microbiol. 14: 41–50.

    Article  PubMed  CAS  Google Scholar 

  6. Carrol, S. F. & R. J. Collier. 1984. NAD+ binding site of diphtheria toxin: identification of a residue within the nicotinamide subsite by photochemical modification with NAD. Proc. Natl. Acad. Sci. USA 81: 3307–3311.

    Article  Google Scholar 

  7. Barbieri, J. T., L. M. Mende-Meuller, R. Rappuoli & R. J. Collier. 1989. Photolabeling of Glul29 of the s-1 subunit of pertussis toxin with NAD. Infect. Immunol. 57: 3549–3554.

    CAS  Google Scholar 

  8. Tweten, R. K., J. T. Barbieri & R. J. Collier. 1985. Diphtheria toxin. Effect of substituting aspartic acid for glutamic acid 148 on ADP-ribosyltransferase activity. J. Biol. Chem. 260: 10392–10394.

    PubMed  CAS  Google Scholar 

  9. Antoine, R., A. Tallett, S. vanHeyningen & C. Locht. 1993. Evidence for a catalytic role of glutamic acid 129 in the NAD-glycohydrolase activity of the pertussis toxin SI subunit. J. Biol. Chem. 268: 24149–24155.

    PubMed  CAS  Google Scholar 

  10. Ruf, A., J. M. DeMurcia, G. M. DeMurcia & G. E. Schulz. 1996. Structure of the catalytic fragment of poly(ADP-ribose)polymerase from chicken. Proc. Natl. Acad. Sci. USA 93: 7481–7485.

    Article  PubMed  CAS  Google Scholar 

  11. Burnette, W. N., W. Cieplak, V. L. Mar, K. T. Kaljot, H. Sato & J. M. Keith. 1988. Pertussis toxin SI mutant with reduced enzyme activity and a conserved protective epitope. Science 242: 72–74.

    Article  PubMed  CAS  Google Scholar 

  12. Papini, E., G. Schiavo, D. Sandona, R. Rappuoli & C. Montecucco. 1989. Histindine 21 is at the NAD+ binding site of diphtheria toxin. J. Biol. Cem. 264: 12385–12388.

    CAS  Google Scholar 

  13. Blanke, S. R., K. Huang, B. A. Wilson, E. Papini, A. Covacci & R. J. Collier. 1994. Active site mutations of the diphtheria toxin catalytic domain: role of histidine-21 in nicotinamide adenine dinucleotide binding and ADP-ribosylation of elongation factor 2. Biochemistry 33: 5155–5161.

    Article  PubMed  CAS  Google Scholar 

  14. Rost, B. & C. Sander. 1993. Improved prediction of protein secondary structure by use of sequence profiles and neural networks. Proc. Natl. Acad. Sci. USA 90: 7558–7562.

    Article  PubMed  CAS  Google Scholar 

  15. Sander, C. & R. Schneider. 1994. The HSSP database of protein structure-sequence alignments. Nucleic Acids Res. 22: 3597–3599.

    PubMed  CAS  Google Scholar 

  16. Koch-Nolte, F., D. Petersen, S. Balasubramanian, F. Haag, D. Kahlke, T. Wilier, R. Kastelein, F. Bazan & H. G. Thiele. 1996. Mouse T cell membrane proteins Rt6-1 and Rt6-2 are arginine/protein mono ADP-ribosyltransferases and share secondary structure motifs with ADP-ribosylating bacterial toxins. J. Biol. Chem. 271: 7686–7693.

    Article  PubMed  CAS  Google Scholar 

  17. Takada, T., K. Iida & J. Moss. 1995. Conservation of a common motif in enzymes catalyzing ADP-ribose transfer. Identification of domains in mammalian transferases. J. Biol. Chem. 270: 541–544.

    Article  PubMed  CAS  Google Scholar 

  18. Domenighini, M. & R. Rappuoli. 1996. Three conserved consensus sequences identify the NAD-binding site of ADP-ribosylating enzymes, expressed by eukaryotes, bacteria and T-even phages. Mol. Microbiol. 21: 667–674.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bredehorst, K., Wursthorn, K., Thiele, HG., Haag, F., Koch-Nolte, F. (1997). Using Secondary Structure Predictions and Site-Directed Mutagenesis to Identify and Probe the Role of Potential Active Site Motifs in the RT6 Mono(ADP-Ribosyl)Transferases. In: Haag, F., Koch-Nolte, F. (eds) ADP-Ribosylation in Animal Tissues. Advances in Experimental Medicine and Biology, vol 419. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8632-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8632-0_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4652-4

  • Online ISBN: 978-1-4419-8632-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics