Skip to main content

Sequence and Structural Links between Distant ADP-Ribosyltransferase Families

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 419))

Abstract

The low resolution structure of the Pseudomonas aeroginosa exotoxin A (ETA) presented in 1986 provided the first tantalizing three-dimensional view of an ADP-ribosyltransferase (ADPRT) catalytic domain. The major features of this protein fold have recurred in the more recently solved crystal structures of the cholera toxin-related heatlabile enterotoxin (LT), diphtheria toxin (DT) and pertussis toxin (PT). A core set of α+β elements define a minimal, conserved scaffold with remarkably plastic sequence requirements - only a single glutamic acid residue critical to catalytic activity is invariant. Other interchangeable residues in locations important for catalysis and binding are suggested by the cocrystal structures of DT with the inhibitor ApUp, ETA with bound AMP and nicotinamide, and DT with substrate NAD - in close accord with labeling and mutagenic data. Faint sequence resemblances that were earlier noticed among prokaryotic ADPRTs have now been securely extended by the structural concordance between toxin folds; more recently, eukaryotic ADPRTs have surfaced and their sequences can be reliably threaded into the conserved core fold. We will briefly summarize efforts in Palo Alto and Hamburg to explore these latter relationships, and to mount a rigorous search for new ADPRT families in the growing sequence databases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bork, P., C. Ouzounis, C. Sander. 1994. From genome sequences to protein function. Cun: Opin. Struct. Biol. 4: 393–403.

    Article  Google Scholar 

  2. Pawson, T. 1995. Protein modules and signalling networks. Nature 373: 573–580.

    Article  PubMed  CAS  Google Scholar 

  3. Koch-Nolte, F., F. Haag, R. Kastelein, J.F. Bazan. 1996. Uncovered-the family relationship of a T-cell membrane protein and bacterial toxins. Immunol. Today 17: 402–405.

    Article  PubMed  CAS  Google Scholar 

  4. Holm, L., C. Sander. 1996. Mapping the protein universe. Science 273: 595–603.

    Article  PubMed  CAS  Google Scholar 

  5. Fischer, D., D. Rice, J.U. Bowie, D. Eisenberg. 1996. Assigning amino acid sequences to 3-dimensional protein folds. FASEB J. 10: 126–136.

    PubMed  CAS  Google Scholar 

  6. Rost, B., A. Valencia. 1996. Pitfalls of protein sequence analysis. Cun: Opin. Biotech. 7: 457–461.

    Article  CAS  Google Scholar 

  7. Bork, P., T. Gibson. 1996. Applying motif and profile searches. Meth. Enzym. 266: 162–184.

    Article  PubMed  CAS  Google Scholar 

  8. Firestine, S.M., A.E. Nixon, S.J. Benkovic. 1996. Threading your way to protein function. Chem. and Biol. 3: 779–783.

    Article  CAS  Google Scholar 

  9. Casari, G., C. Sander, A. Valencia. 1995. A method to predict functional residues in proteins. Nature Struct. Biol. 2: 171–178.

    Article  PubMed  CAS  Google Scholar 

  10. Lichtarge, O., H.R. Bourne, F.E. Cohen. 1996. An evolutionary trace method defines binding surfaces common to protein families. J. Moke. Biol. 257: 342–358.

    Article  CAS  Google Scholar 

  11. Brannigan, J.A., G. Dodson, H.J. Duggleby, P.C. Moody, J.L. Smith, D.R. Tomchick, A.G. Murzin. 1995. A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature 378: 416–419.

    Article  PubMed  CAS  Google Scholar 

  12. Fauman, E.B., M.A. Saper. 1996. Structure and function of the protein tyrosine phosphatases. Trends Biochem. Sci. 27:413–417.

    Article  Google Scholar 

  13. Allured, V.S., R.J. Collier, S.F. Carroll, D.B. McKay. 1986. Structure of exotoxin A of Pseudomonas aeruginosa at 3.0-Å resolution. Proc. Natl. Acad. Sci. USA 83: 1320–1324.

    Article  PubMed  CAS  Google Scholar 

  14. Sixma, T.K., S.E. Pronk, K.H. Kalk, E.S. Wartna, B.A.M. Van Zanten, B. Witholt, W.G.J. Hol. 1991. Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature 351: 371–377.

    CAS  Google Scholar 

  15. Choe, S., M.J. Bennett, G. Fujii, P.M. Curmi, K.A. Kantardjieff, R.J. Collier, D. Eisenberg. 1992. The crystal structure of diphtheria toxin. Nature 357: 216–222.

    Article  PubMed  CAS  Google Scholar 

  16. Weiss, M.S., S.R. Blanke, R.J. Collier, D. Eisenberg. 1995. Structure of the isolated catalytic domain of diphtheria toxin. Biochem. 34: 773–781.

    Article  CAS  Google Scholar 

  17. Stein, P.E., A. Boodhoo, G.D. Armstrong, S.A. Cockle, M.H. Klein, R.J. Read. 1994. The crystal structure of pertussis toxin. Structure 2: 45–57.

    Article  PubMed  CAS  Google Scholar 

  18. Li, M., F. Dyda, I. Benhar, I. Pastan, D.R. Davies. 1996. The crystal structure of Pseudomonas aeruginosa exotoxin domain III with nicotinamide and AMP: conformational differences with the intact exotoxin. Proc. Natl. Acad. Sci. USA 92: 9308–9312.

    Article  Google Scholar 

  19. Bell, C.E., D. Eisenberg. 1996. Crystal structure of diphtheria toxin bound to nicotinamide adenine dinucleotide. Biochem. 35: 1137–1149.

    Article  CAS  Google Scholar 

  20. Ruf, A., J. Mennissier de Murcia, G. de Murcia, G.E. Schulz. 1996. Structure of the catalytic fragment of poly(ADP-ribose) polymerase from chicken. Proc. Natl. Acad. Sci. USA 93: 7481–7485.

    Article  PubMed  CAS  Google Scholar 

  21. Takada, T., K. Iida, J. Moss. 1995. Conservation of a common motif in enzymes catalyzing ADP-ribose transfer. Identification of domains in mammalian transferases. J. Biol. Chem. 270: 541–544.

    Article  PubMed  CAS  Google Scholar 

  22. Koch-Nolte, F., D. Petersen, S. Balasubramanian, F. Haag, D. Kahlke, T. Wilier, R. Kastelein, J.F. Bazan, H.G. Thiele. 1996. Mouse T cell membrane proteins Rt6-1 and Rt6-2 are arginine/protein mono(ADPribosyl) transferases and share secondary structure motifs with ADP-ribosylating bacterial toxins. J. Biol. Chem. 271: 7686–7693.

    Article  PubMed  CAS  Google Scholar 

  23. Domenighini, M., R. Rappouli. 1996. Three conserved consensus sequences identify the NAD-binding site of ADP-ribosylating enzymes, expressed by eukaryotes, bacteria and T-even bacteriophages. Molec. Microbiol. 21:661–614.

    Article  Google Scholar 

  24. Murzin, A.G., S.E. Brenner, T. Hubbard, C. Chothia. 1995. SCOP-A Structural Classification Of Proteins database for the investigation of sequences and structures. J. Molec. Biol. 247: 536–540.

    PubMed  CAS  Google Scholar 

  25. Holm, L., C. Sander. 1995. Dali-A network tool for protein structure comparison. Trends Biochem. Sci. 20: 478–480.

    Article  PubMed  CAS  Google Scholar 

  26. Rost, B., C. Sander. 1996. Bridging the protein sequence-structure gap by structure predictions. Ann. Rev. Biophys. Biomolec. Struct. 25: 113–136.

    Article  CAS  Google Scholar 

  27. Sayle, R.A., E.J. Milner-White. 1995. Rasmol-Biomolecular graphics for all. Trends Biochem. Sci. 20: 374–376.

    Article  PubMed  CAS  Google Scholar 

  28. Reich, K.A., G.K. Schoolnik. 1996. Halovibrin, secreted from the light organ symbiont Vibrio fischeri, is a member of a new class of ADP-ribosyltransferases. J. Bacteriol. 178: 209–215.

    PubMed  CAS  Google Scholar 

  29. Li, M., F. Dyda, I. Benhar, I. Pastan, D.R. Davies. 1996. Crystal structure of the catalytic domain of Pseudomonas exotoxin A complexed with a nicotinamide adenine dinucleotide analog: implications for the activation process and for ADP ribosylation. Proc. Natl. Acad. Sci. USA 93: 6902–6906.

    Article  PubMed  CAS  Google Scholar 

  30. Sali, A. 1995. Modeling mutations and homologous proteins. Curr. Opin. Biotech. 6: 437–451.

    Article  PubMed  CAS  Google Scholar 

  31. Levitt, M. 1992. Accurate modeling of protein conformation by automatic segment matching. J. Molec. Biol. 226: 507–533.

    Article  PubMed  CAS  Google Scholar 

  32. Chung, S.Y., S. Subbiah. 1996. A structural explanation for the twilight zone of protein sequence homology. Structure 4: 1123–1127.

    Article  PubMed  CAS  Google Scholar 

  33. Domenighini, M., C. Montecucco, W.C. Ripka, R. Rappuoli. 1991. Computer modeling of the NAD binding site of ADP-ribosylating toxins-active site structure and mechanism of NAD binding. Molec. Microbiol. 5: 23.

    Article  CAS  Google Scholar 

  34. Marsischky, G.T., B.A. Wilson, R.J. Collier. 1995. Role of glutamic acid 988 of human poly-ADP-ribose polymerase in polymer formation. Evidence for active site similarities to the ADP-ribosylating toxins. J. Biol. Chem. 270: 3247–3254.

    Article  PubMed  CAS  Google Scholar 

  35. Grimaldi, J.C., S. Balasubramanian, N.H. Kabra, A. Shanafelt, J.F. Bazan, G. Zurawski, M.C. Howard. 1995. CD38-mediated ribosylation of proteins. J. Immunol. 155: 811–817.

    PubMed  CAS  Google Scholar 

  36. Prasad, G.S., D.E. McRee, E.A. Stura, D.G. Levitt, H.C. Lee, CD. Stout. 1996. Crystal structure of Aplysia ADP ribosyl cyclase, a homologue of the bifunctional ectoenzyme CD38. Nature Struct. Biol. 3: 957–964.

    Article  PubMed  CAS  Google Scholar 

  37. Honig, B., A. Nicholls. 1995. Classical electrostatics in biology and chemistry. Science 268: 1144–1149.

    Article  PubMed  CAS  Google Scholar 

  38. Shao Z., F.H. Arnold. 1996. Engineering new functions and altering existing functions. Curt: Opin. Struct. Biol. 6:513–518.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fernando Bazan, J., Koch-Nolte, F. (1997). Sequence and Structural Links between Distant ADP-Ribosyltransferase Families. In: Haag, F., Koch-Nolte, F. (eds) ADP-Ribosylation in Animal Tissues. Advances in Experimental Medicine and Biology, vol 419. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8632-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8632-0_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4652-4

  • Online ISBN: 978-1-4419-8632-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics