Murine protein kinase CK2: Gene and oncogene

  • Xin Xu
  • Esther Landesman-Bollag
  • Padma L. Channavajhala
  • David C. Seldin
Part of the Developments in Molecular and Cellular Biochemistry book series (DMCB, volume 27)

Abstract

Protein kinase CK2 (casein kinase II) is a serine-threonine protein kinase with a wide range of substrates, many of which are involved in cell cycle regulation. CK2 activity is elevated in a variety of human tumors and we have used a transgenic mouse model to demonstrate that dysregulated expression of CK2 can induce lymphoma. Thus, CK2 fulfills the definition of an oncogene: A mutated, dysregulated, or mis-expressed gene that contributes to cancer in a dominant fashion. CK2 cooperates in transforming cells with other lymphoid oncogenes such as myc and tal-1, and here we show cooperativity with loss of the tumor suppressor gene p53. To understand more about the physiological and pathological role of CK2, we are cloning the murine CK2α′ cDNA and gene. CK2α′ will be used to generate transgenic and knockout mice and the regulatory elements for gene expression will be analyzed. (Mol Cell Biochem 191: 65–74, 1999)

Key words

casein kinase II protein kinase oncogene transgenic mice lymphoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allende JE, Allende CC: Protein kinases. 4. Protein kinase CK2: An enzyme with multiple substrates and a puzzling regulation. (Review). FASEBJ 9: 313–323, 1995Google Scholar
  2. 2.
    Hrubey TW, Roach PJ: Phosphoserine in peptide substrates can specify casein kinase II action. Biochem Biophys Res Com 172: 190–196, 1990PubMedCrossRefGoogle Scholar
  3. 3.
    Litchfield DW, Arendt A, Lozeman FJ, Krebs EG, Hargrave PA, Paiczewski K: Synthetic phosphopeptides are substrates for casein kinase II. FEBS Lett 261: 117–120, 1990PubMedCrossRefGoogle Scholar
  4. 4.
    Pinna LA: Casein kinase 2: An ‘eminence grise’ in cellular regulation? (Review). Biochim Biophys Acta 1054: 267–284, 1990PubMedCrossRefGoogle Scholar
  5. 5.
    Ole-MoiYoi OK: Theileria parva: An intracellular protozoan parasite that induces reversible lymphocyte transformation. Exp Parasitai 69: 204–210, 1989CrossRefGoogle Scholar
  6. 6.
    Ole-MoiYoi OK, Brown WC, lams KP, Nayar A Tsukamoto T, Macklin MD: Evidence for the induction of casein kinase II in bovine lymphocytes transformed by the intracellular protozoan parasite Theileria parva. EMBO J 12: 1621–1631, 1993PubMedGoogle Scholar
  7. 7.
    Daya-Makin M, Sanghera JS, Mogentale TL, Lipp M, Parchomchuk J, Hogg JC, Pelech SL: Activation of a tumor-associated protein kinase (p40TAK) and casein kinase 2 in human squamous cell carcinomas and adenocarcinomas of the lung. Cancer Res 54: 2262–2268, 1994PubMedGoogle Scholar
  8. 8.
    Faust RA, Gapany M, Tristani P, Davis A, Adams GL, Ahmed K: Elevated protein kinase CK2 activity in chromatin of head and neck tumors: association with malignant transformation. Cancer Left 101: 31–35, 1996CrossRefGoogle Scholar
  9. 9.
    Friedrich TD, Ingram VM: Identification of a novel casein kinase activity in HeLa cell nuclei. Biochim Biophys Acta 992: 41–48, 1989PubMedCrossRefGoogle Scholar
  10. 10.
    Gapany M, Faust RA, Tawfic S, Davis A, Adams GL, Ahmed K: Association of elevated protein kinase CK2 activity with aggressive behavior of squamous cell carcinoma of the head and neck. Mol Med 1: 659–666, 1995PubMedGoogle Scholar
  11. 11.
    Issinger OG: Casein kinases: Pleiotropic mediators of cellular regulation. Pharmacol Ther 59: 1–30, 1993PubMedCrossRefGoogle Scholar
  12. 12.
    Mestres P, Boldyreff B, Ebensperger C, Hameister H, Issinger OG: Expression of casein kinase 2 during mouse embryogenesis. Acta Anat (Basel) 149: 13–20, 1994CrossRefGoogle Scholar
  13. 13.
    Munstermann U, Fritz G, Seitz G, LuYP, Schneider HR, Issinger OG: Casein kinase II is elevated in solid human tumours and rapidly proliferating nonneoplastic tissue. Eur J Biochem 189: 251–257, 1990PubMedCrossRefGoogle Scholar
  14. 14.
    Seldin DC, Leder P: Casein kinase II alpha transgene-induced murine lymphoma: Relation to theileriosis in cattle (see comments). Science 267: 894–897, 1995PubMedCrossRefGoogle Scholar
  15. 15.
    Berberich SJ, Cole MD: Casein kinase II inhibits the DNA-binding activity of Max homodimers but not Myc/Max heterodimers. Genes Dev 6: 166–176, 1992PubMedCrossRefGoogle Scholar
  16. 16.
    Foroni L, Boehm T, White L, Forster A Sherrington P, Liao XB, Brannan CI, Jenkins NA, Copeland NG, Rabbitts TH: The rhombotin gene family encode related LIM-domain proteins whose differing expression suggests multiple roles in mouse development. J Mol Biol 226: 747–761, 1992PubMedCrossRefGoogle Scholar
  17. 17.
    Warren AJ, Colledge WH, Carlton MB, Evans MJ, Smith AJ, Rabbitts TH: The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell 78: 45–57, 1994PubMedCrossRefGoogle Scholar
  18. 18.
    Hwang LY, Baer RJ: The role of chromosome translocations in T cell acute leukemia. Curr Opin Immunol 7: 659–664, 1995PubMedCrossRefGoogle Scholar
  19. 19.
    Kelliher MA, Seldin DC, Leder P: Tal-1 induces T cell acute lymphoblastic leukemia accelerated by casein kinase Ha. EMBO J 15: 5160–5166, 1996PubMedGoogle Scholar
  20. 20.
    El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B: WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825, 1993PubMedCrossRefGoogle Scholar
  21. 21.
    Israeli D, Tessler E, Haupt Y, Elkeles A, Wilder S, Amson R, Telerman A, Oren M: A novel p53-inducible gene, PAG608, encodes a nuclear zinc finger protein whose overexpression promotes apoptosis (In Process Citation). EMBO J 16: 4384–4392, 1997PubMedCrossRefGoogle Scholar
  22. 22.
    Miyashita T, Reed JC: Tumor suppressorp53 is a direct transcriptional activator of the human bax gene. Cell 80: 293–299, 1995PubMedCrossRefGoogle Scholar
  23. 23.
    Yin C, Knudson CM, Korsmeyer SJ, Van DT: Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 385: 637–640, 1997PubMedCrossRefGoogle Scholar
  24. 24.
    Malkin D, Li FP, Strong LC, Fraumeni JJ, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA, et al.: Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms (see comments). Science 250: 1233–1238, 1990PubMedCrossRefGoogle Scholar
  25. 25.
    Sivasubramanian N, Adhikary G, Sil PC, Sen S: Cardiac myotrophin exhibits rel/NF-kappa B interacting activity in vitro. J Biol Chem 271: 2812–2816, 1996PubMedCrossRefGoogle Scholar
  26. 26.
    Srivastava S, Zou ZQ, Pirollo K, Blattner W, Chang EH: Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome (see comments). Nature 348: 747–749, 1990PubMedCrossRefGoogle Scholar
  27. 27.
    Hollstein M, Rice K, Greenblatt MS, Soussi T, Fuchs R, Sortie T, Hovig E, Smith SB, Montesano R, Harris CC: Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res 22: 3551–3555, 1994PubMedGoogle Scholar
  28. 28.
    Meek DW, Simon S, Kikkawa U, Eckhart W The p53 tumour suppressor protein is phosphorylated at serine 389 by casein kinase II. EMBO J 9: 3253–3260, 1990PubMedGoogle Scholar
  29. 29.
    Herrmann CP, Kraiss S, Montenarh M: Association of casein kinase II with immunopurified p53. Oncogene 6: 877–884, 1991PubMedGoogle Scholar
  30. 30.
    Hupp TR, Meek DW, Midgley CA, Lane DP: Regulation of the specific DNA binding function of p53. Cell 71: 875–886, 1992PubMedCrossRefGoogle Scholar
  31. 31.
    Milne DM, Palmer RH, Meek DW: Mutation of the casein kinase II phosphorylation site abolishes the anti-proliferative activity of p53. Nucl Acids Res 20: 5565–5570, 1992PubMedCrossRefGoogle Scholar
  32. 32.
    Rolley N, Milner J: Specific DNA binding by p53 is independent of mutation at serine 389, the casein kinase II site. Oncogene 9: 3067–3070, 1994PubMedGoogle Scholar
  33. 33.
    Fiscelia M, Zambrano N, Ullrich SJ, Unger T, Lin D, Cho B, Mercer WE, Anderson CW, Appelia E: The carboxy-terminal serine 392 phosphorylation site of human p53 is not required for wild-type activities. Oncogene 9: 3249–3257, 1994Google Scholar
  34. 34.
    Hall SR, Campbell LE, Meek DW: Phosphorylation of p53 at the casein kinase II site selectively regulates p53-dependent transcriptional repression but not transactivation. Nucl Acids Res 24: 1119–1126, 1996PubMedCrossRefGoogle Scholar
  35. 35.
    Filhol O, Baudier J, Delphin C, Loue-Mackenbach P, Chambaz EM, Cochet C: Casein kinase II and the tumor suppressor protein P53 associate in a molecular complex that is negatively regulated upon P53 phosphorylation. J Biol Chem 267: 20577–20583, 1992PubMedGoogle Scholar
  36. 36.
    Appel K, Wagner P, Boldyreff B, Issinger OG, Montenarh M: Mapping of the interaction sites of the growth suppressor protein p53 with the regulatory beta subunit of protein kinase CK2. Oncogene 11: 1971–1978, 1995 37. Filhol O, Baudier J, Chambaz EM, Cochet C: Casein kinase 2 inhibits the renaturation of complementary DNA strands mediated by p53 protein. Biochem J 331-335, 1996PubMedGoogle Scholar
  37. 38.
    Oberosler P, Hloch P, Ramsperger U, Stahl H: p53-catalyzed annealing of complementary single-stranded nucleic acids. EMBO J 12: 2389–2396, 1993PubMedGoogle Scholar
  38. 39.
    Bakalkin G, Yakovleva T, Seiivanova G, Magnusson KP, Szekely L, Kiseleva E, Klein G, Terenius L, Wiman KG: p53 binds single-stranded DNA ends and catalyzes DNA renaturation and strand transfer. Proc Nati Acad Sci USA 91: 413–117, 1994CrossRefGoogle Scholar
  39. 40.
    Bakalkin G, Seiivanova G, Yakovleva T, Kiseleva E, Kashuba E, Magnusson KP, Szekely L, Klein G, Terenius L, Wiman KG: p53 binds single-stranded DNA ends through the C-terminal domain and internal DNA segments via the middle domain. Nucl Acids Res 23: 362–369, 1995PubMedCrossRefGoogle Scholar
  40. 41.
    Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CJ, Butel JS, Bradley A: Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221, 1992PubMedCrossRefGoogle Scholar
  41. 42.
    Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, Weinberg RA: Tumor spectrum analysis in p53-mutant mice. Curr Biol 4: 1–7, 1994PubMedCrossRefGoogle Scholar
  42. 43.
    Purdie CA, Harrison DJ, Peter A Dobbie L, White S, Howie SE, Salter DM, Bird CC, Wyllie AH, Hooper ML, et al.: Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. Oncogene 9: 603–609, 1994PubMedGoogle Scholar
  43. 44.
    Matthews DE, Farewell VT: Using and Understanding Medical Statistics. Basel, Karger AG, 1996Google Scholar
  44. 45.
    Lozeman FJ, Litchfield DW, Piening C, Takio K, Walsh KA, Krebs EG: Isolation and characterization of human cDNA clones encoding the alpha and the alpha’ subunits of casein kinase li. Biochemistry 29: 8436–8447, 1990PubMedCrossRefGoogle Scholar
  45. 46.
    Maridor G, Park W, Krek W, Nigg EA: Casein kinase II. cDNA sequences, developmental expression, and tissue distribution of mRNAs for alpha, alpha′, and beta subunits of the chicken enzyme. J Biol Chem266: 2362-2368, 1991Google Scholar
  46. 47.
    Padmanabha R, Chen WJ, Hanna DE, Glover CV: Isolation, sequencing, and disruption of the yeast CKA2 gene: Casein kinase II is essential for viability in Saccharomyces cerevisiae. Mol Cell Biol 10: 4089–4099, 1990PubMedGoogle Scholar
  47. 48.
    Sehgal A, Patil N, Chao M: A constitutive promoter directs expression of the nerve growth factor receptor gene. Mol Cell Biol 8: 3160–3167, 1988PubMedGoogle Scholar
  48. 49.
    Weis L, Reinberg D: Transcription by RNA polymerase II: Initiatordirected formation of transcription-competent complexes. FASEB J 6: 3300–3309, 1992PubMedGoogle Scholar
  49. 50.
    Hu E, Rubin CS: Casein kinase II from Caenorhabditis elegans. Properties and developmental regulation of the enzyme; cloning and sequence analyses of cDNA and the gene for the catalytic subunit. J Biol Chem 265: 5072–5080, 1990PubMedGoogle Scholar
  50. 51.
    Larsen F, Gundersen G, Lopez R, Prydz H: CpG islands as gene markers in the human genome. Genomics 13: 1095–1107, 1992PubMedCrossRefGoogle Scholar
  51. 52.
    Yang-Feng T, Naiman T, Kopatz I, Eli D, Dafni N, Canaani D: Assignment of the human casein kinase II alpha’ subunit gene (CSNK2A1) to chromosome 16pl3.2–pl3.3, 1994Google Scholar
  52. 53.
    Hanna DE, Rethinaswamy A, Glover CV: Casein kinase II is required for cell cycle progression during Gl and G2/M in Saccharomyces cerevisiae. J Biol Chem 270: 25905–25914, 1995PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Xin Xu
    • 1
  • Esther Landesman-Bollag
    • 1
  • Padma L. Channavajhala
    • 1
  • David C. Seldin
    • 1
  1. 1.Department of Medicine, Microbiology, and PathologyBoston University Medical CenterBostonUSA

Personalised recommendations