Skip to main content

Multielectrode Micromachined Gas Sensors

A New Approach for Resistive Gas Sensors

  • Chapter
Advanced Gas Sensing
  • 165 Accesses

Abstract

In this article a new multielectrode micromachined gas sensor, fabricated by silicon technology, is presented. The device enables different measuring methods which can be used to optimize the properties of resistive gas sensors, e.g. tin oxide sensors. In addition to the conventional interdigitated electrode below the sensitive film, a second interdigitated electrode has been manufactured on top of it. With the use of the two pairs of electrodes it is possible to use different electrical set-ups for resistive measurements. Firstly, the electrodes below and on top of the sensing layer lead to a different sensor behaviour. Therefore, a double sensor array is designed. Secondly, the sensor enables the application of external electric fields e.g. between one electrode and the plane heater. With the use of external electric fields both the resistivity and the sensitivity of the gas sensors could be influenced, significantly. The manufacturing of the silicon based sensor device is described in detail. Results from measurements in different nitrogen dioxide concentrations, applying both measuring principles, are presented and discussed. A qualitative model to explain the sensor properties and suggestions on how to use the new measurement method are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Göpel, W., Hesse, J., and Zemel, J.N. (eds.): Sensors, A Comprehensive Survey,Vol.2,Chemical and Biochemical Sensors, Part I, VCH Verlagsges. mbH, Weinheim (1991)

    Google Scholar 

  2. Madou, M.J., and Morrison, S.R.: Chemical Sensing with Solid State Devices, Academic Press Inc., California USA (1988)

    Google Scholar 

  3. Kohl, D., Surface processes in the detection of reducing gases with Sn02-based devices, Sensors and Actuators, 18 (1989) pp. 71–113

    Article  CAS  Google Scholar 

  4. Morrison, S.R.: The Chemical Physics of Surfaces, Plenum Press, New York and London (1977)

    Book  Google Scholar 

  5. Morrison, S.R.: Selectivity in Semiconductor Gas Sensors, Sensors and Actuators 12 (1987) pp. 425–440

    Article  CAS  Google Scholar 

  6. Heiland, G.: Homogeneous semiconducting gas sensors, Sensors and Actuators 2 (1982) pp. 343–361

    Article  CAS  Google Scholar 

  7. Heiland, G., and Kohl, D., Problems and possibilities of oxidic and organic semiconductor gas sensors, Sensors and Actuators 8 (1985) pp. 227–233

    Article  Google Scholar 

  8. Sberveglieri, G., Recent developments in semiconducting thin-film gas sensors, Sensors and Actuators B 23 (1995) pp. 103–109

    Article  Google Scholar 

  9. Weimar, U., and Göpel, W.: A.c. measurements on tin oxide sensors to improve selectivities and sensitivities, Sensors and Actuators B 26-27 (1995) pp. 13–18

    Article  Google Scholar 

  10. de Agapito, J., and Santos, J.: The interaction of low N02 concentrations in air with degenerate nanocrystalline tin dioxide thin films, Sensors and Actuators B31 (1996) pp. 93–98

    Google Scholar 

  11. Diéguez, A., Romano-Rodríguez, A., Morante, J.R., et al.: Morphological analysis of nanocrystalline Sn02 for gas sensor applications, Sensors and Actuators B31(1996)pp. 1–8

    Google Scholar 

  12. Gentry, S.J., Jones, T.A., The role of catalysts in solid-state gas sensors, Sensors and Actuators 10 (1986) pp. 141–16313

    Article  CAS  Google Scholar 

  13. Ylinampa, A., Lantto, V., and Leppävuori, S.: Some differences between Au and Pt electrodes in Sn02 thick-film gas sensors, Sensors and Actuators B 13–14 (1993) pp. 602–604

    Google Scholar 

  14. Doll, T., Lechner, J., Eisele, I., et al.: Ozone Detection in the ppb-Range with Workfunction Sensors Operating at Room Temperature, 8th Int. Conf. on Solid-State Sensors and Actuators, and Eurosensors IX., Stockholm 1995, pp. 997–1000

    Google Scholar 

  15. Endres, H.-E., Drost, S., and Hutter, F.: Impedance spectroskopy on dielectric gas sensors, Sensors and Actuators B22 (1994) pp. 7–11

    CAS  Google Scholar 

  16. Egashira, M., Shimizu, Y., Takao, Y., and Sako, S.: Variations in I-V characteristics of oxide semiconductors induced by oxidizing gases, Sensors and Actuators B35-36 (1996) pp. 62–67

    Google Scholar 

  17. Getino, J., Gutiérrez, J., Arés; L., et al.: Integrated sensor array for gas analysis in combustion atmospheres, Proc. 8th Int. Conf. on Solid-State Sensors and Actuators, and Eurosensors IX., Stockholm 1995, pp. 803–806

    Google Scholar 

  18. Hellmich, W., Müller, G., Bosch-v.Braunmühl, C, et al.: Field-Effect-Induced Gas Sensitivity Changes in Metal Oxides, Proc. Eurosensors X, Leuven (Belgium), 1996, pp. 505–508

    Google Scholar 

  19. Di Natale, C, Davide, F., and D’Amico, A.: Pattern recognition in gas sensing: well-stated techniques and advances, Sensors and Actuators B23 (1995) pp. 111–11820

    Google Scholar 

  20. Hausner, M: Silizium-basiertes Sensorsystem zur Erfassung von Spurengasen in Luft mittels mikrostrukturierter Multielektroden-Anordnungen, Dissertationsschrift, Universität Bremen (1997)

    Google Scholar 

  21. Hausner, M; Zacheja, J.; Binder, J.: Multi-electrode substrate for selectivity enhancement in air monitoring, Sensors and Actuators B43 (1997) pp. 11–17

    CAS  Google Scholar 

  22. Storm, U. Bartels, O. Binder, J.: Sensitivity Enhancement for Resistive Gas Sensors by External Electrical Fields. Proceedings of Sensor′99, Nürnberg (Mai 1999) pp. 487–491.

    Google Scholar 

  23. Bartels, O., Splinter, A., Storm, U., and Binder, J.: Thick porous silicon layers as sacrificial material for low power gas sensors, Proceedings of SPIE Volume 3892, pp. 184–191, Device and Process Technologies for MEMS and Microelectronics (October 1999, Queensland, Australia)

    Google Scholar 

  24. Hausner, M., Storm, U., Karagözoglu, H., Zacheja, J., and Binder, J.: Air Monitoring by a Combined Resistive and Field Effect Sensor Device, Proc. 9th Int. Conf. on Solid-State Sensors and Actuators (Transducers’97), Chicago (USA), June 16–19,1997

    Google Scholar 

  25. Geistlinger, H.: Equilibrium theory of chemisorption and bulk diffusion of MO-THIN-FILMS, Proc. 8th Int. Conf. on Solid-State Sensors and Actuators, and Eurosensors IX., Stockholm 1995, pp. 863–865

    Google Scholar 

  26. Geistlinger, H.: Semi-klassisches Modell und phänomenologische Elektronentheorie der Chemisorption halbleitender Metalloxid-Dünnschichten Habilitationsschrift, TU Ilmenau (1997)

    Google Scholar 

  27. Laurs, H. and Heiland, G., Electrical and Optical Properties of Phtalocyanine Films, Thin Solid Films, 149 (1987) 129 ff.

    Article  CAS  Google Scholar 

  28. Hellmich, W.: Feldinduzierte Empfindlichkeitssteuerung bei mikromechanisch hergestellten Halbleitergassensoren auf Sn02-Basis Dissertationsschrift, Universität der Bundeswehr München (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hausner, M., Storm, U., Bartels, O., Binder, J. (2003). Multielectrode Micromachined Gas Sensors. In: Doll, T. (eds) Advanced Gas Sensing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8612-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8612-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4647-0

  • Online ISBN: 978-1-4419-8612-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics