Potential-Controlled Gas-Sensor Devices

State of the Art and Trends
  • J. Kappler
  • U. Weimar
  • W. Göpel


In spite of extensive research and development of conductivity-controlled gas sensing, corresponding potential-controlled gas sensing has so far been investigated and applied in practical devices only in a few cases [1–4]. This is surprising since conductivity changes are always related with potential changes. The latter may in principle be measured very sensitively as it has been illustrated in many laboratory-type experiments e.g. using the chemical Kelvin probe setup [5–7]. In addition, the straight-forward understanding of electrical potentials on the basic science level is usually easier if compared with the corresponding understanding of conductivities.


Clay Hydroxyle Palladium Calcination Chemisorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. Göpel, Technologien für die chemische und biochemische Sensorik, Conf. Proc. Sensor 88, Technolgietrends in der Sensorik, Hellmich KG, Berlin (FRG) 1988, p. 257Google Scholar
  2. [2]
    H. H. Van Der Vlekkert: Field effect gas sensors, Sensors: A Comprehensive Survey, Vol. 2 Chap. 10, VCH Weinheim (1991)Google Scholar
  3. [3]
    W. Göpel, Elektrochemische Sensoren und Molekularelektronik, Dechema Monographie, Vol. 117, VCH, Weinheim (FRG) 1989, p. 9, ISBN 3-527-10220-5Google Scholar
  4. [4]
    W. Göpel, G. Reinhardt, Metal Oxide Sensors: New Devices through tailoring interfaces on atomic scale, in: H Baltes, W. Göpel, J. Hesse (series eds.), Sensors Update: Sensor Technology-Applications-Markets, Vol. 1, VCH, Weinheim (FRG) 1996Google Scholar
  5. [5]
    B. Flietner and I. Eisele, Work function measurements for gas detection using tin oxide layers with a thickness between 1 and 200nm, Thin Solid Films 250 (1994), 258–262CrossRefGoogle Scholar
  6. [6]
    H. Baumgärtner, H. D. Liess, Micro Kelvin Probe for work function measurements, Rev. Sci. Instrum. 59 (5), May 1988Google Scholar
  7. [7]
    K. D. Schierbaum, R. Kowalkowski, U. Weimar and W. Göpel, Conductance, work function and catalytic activity on Sn02-based gas sensors, Sensors and Actuators B 3(1991)205–214CrossRefGoogle Scholar
  8. [8]
    W. Hotan, W. Göpel, R. Haul, Interaction of C02 and CO with nonpolar zincoxide surfaces, Surf. Sci. 83 (1979) 162–180CrossRefGoogle Scholar
  9. [9]
    W. Henzler, W. Göpel, Oberflächenphysik des Festkörpers, B G Teubner Stuttgart (1991)Google Scholar
  10. [10]
    U. Weimar, Dissertationsarbeit, Universität Tübingen 1993Google Scholar
  11. [11]
    W. Göpel, Chemisorption and charge transfer at ionic semiconductor surfaces: implications in designing gas sensors, Progress in surface science Vol. 20 (1) (1985) 9–103CrossRefGoogle Scholar
  12. [12]
    K. D. Schierbaum, X Wie-Xing and W. Göpel, Solid/gas interaction of surface doped oxides: C-V, I-V, XPS, UPS, ELS studies on Pt/Ti02 Pd/Sn02 (110), Ber. Bunsenges. Phys. Chem. 97 (1993), 363–368CrossRefGoogle Scholar
  13. [13]
    D. Ottenbacher,Grenzflächen-und Leitfähigkeitsuntersuchungen an Halbleiterschicht-systemen mit Ta205 und PbPc, Diplomarbeit Tübingen (1989)Google Scholar
  14. [14]
    W. Göpel, Reactivity, electronic structures and geometry of nonpolar zincoxide surfaces, Ber. Bunsenges. Phys. Chem. 82 (1978) 744–756CrossRefGoogle Scholar
  15. [15]
    W. Göpel, L. J. Brillson, C F. Brucker, Surface point defects and schottky barrier formation on ZnO(1010), J. Vac. Sci. Technol. 17 (1980) 894–989CrossRefGoogle Scholar
  16. [16]
    W. Göpel, Charge transfer reactions on semiconductor surfaces, in: J. Treusch (Ed.), Festkörperprobleme: Advances in solid state physics, Vol. XX, Vieweg, Braunschweig (FRG) 1980,177–227Google Scholar
  17. [17]
    J. Janata, M. Josowicz, Analytical Chemistry 1997, 69, 293 A–296 ACrossRefGoogle Scholar
  18. [18]
    N. Barsan, A. Heilig, J. Kappler, U. Weimar, and W. Göpel, CO-Water Interaction with Pd-doped Sn02 Gas Sensors: Simultaneous Monitoring of Resistances and Work Functions, Conf. Proc. EUROSENSORS XIII, The Hague (The Netherlands), ISBN 90-76699-01-1 (9/1999) 183–184.Google Scholar
  19. [19]
    A. Diéguez, A. Romano-Rodríguez, J.L. Alay, J.R. Morante, N. Bârsan, J. Kappler, U. Weimar and W. Göpel, Highly-sensitive nanocrystalline Sn02 gas sensor: parameter optimisation of sol-gel preparation, powder calcination, film preparation, preageing and measurement conditions, 7th IMCS Bejing (1998), technical digest, in printGoogle Scholar
  20. [20]
    I. Lundström, M. S. Shivaraman, C. Svensson and L. Lundkvist, Applied Phys. Letter 26(1975)55CrossRefGoogle Scholar
  21. [21]
    S. K. Andreev, L. I. Popova, V. K. Gueorguiev, G. D. Beshkov, Characteristics and gas sensing behaviour of a tin-oxide-gate FET, Sensors and Actuators B, 8 (1992), 89–91CrossRefGoogle Scholar
  22. [22]
    R. W. Murray, in Electranalytical Chemistry, A. J. Bard (Ed.), N Dekker, NY (1984), Vol.13Google Scholar
  23. [23]
    A. Spetz, U. Helmerson, F. Enquist, M. Armgarth, I. Lundström, Thin solid films 177 (1989), 77–93CrossRefGoogle Scholar
  24. [24]
    J. Janata, M. Josowicz, Anal. Chem. 58, 514 (1986)CrossRefGoogle Scholar
  25. [25]
    G. J. Mac Clay, MOS hydrogen sensors with ultrathin layers of Pd, IEEE trans. Electron devices Vol. ED 32, (1985), 1158–1164CrossRefGoogle Scholar
  26. [26]
    A. Heilig, N. Barsan, U. Weimar and W. Göpel, Selectivity Enhancement of Sn02 Gas Sensors: Simultaneous Monitoring of Resistances and Temperatures, Conf. Proc.Eurosensors XII, Southampton (UK) ISBN 0-7503-0536-3 (9/1998) 633–636; Sensors and Actuators B, 58 (1999) 302–309.Google Scholar
  27. [27]
    R. Mäckel, H. Baumgärtner, and J. Ren, The scanning Kelvin microscope, Rev. Sci. Instrum. 64 (3), March 1999 694–699.CrossRefGoogle Scholar
  28. [28]
    J. Lü, M. Guggisberg, R. Lüthi, L. Scandella, Ch. Gerber, H.-J. Güntherodt, Surface potential studies using Kelvin force spectroscopy, Appl. Phys. A 66 (1998) 273–275CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • J. Kappler
    • 1
  • U. Weimar
    • 1
  • W. Göpel
    • 1
  1. 1.Institute of Physical and Theoretical ChemistryCenter of Interface Analysis and SensorsUniversity of TübingenTübingenGermany

Personalised recommendations