Skip to main content

Introduction to the Electroadsorptive Effect and its Applications

  • Chapter
Advanced Gas Sensing

Abstract

Strong electrical fields acting on the sensitive layer surfaces of a semiconductor gas sensor can alter its adsorption characteristics for gases and thus its sensing behaviour. Models for the effect are described based on the works of Morrison and of Wolkenstein1 and simulations for clarifying important parameters are provided. Design aspects of conductivity sensors for proper use of the effect are discussed, also in a comparison to Potentiometric FET sensors. Some exemplary experimental results obtained with the latter sensors are shown and possible new operation modes of gas sensing using the electroadsorptive effect are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Bielanski, J. Haber, Oxygen in Catalysis, in: Chemical Industries 43, Marcel Dekker,N.Y. 1991

    Google Scholar 

  2. T. Doll, K. Scharnagl, M Bögner, V.M. Fuenzalida. I. Eisele, Metal Oxide Screening for Gas Detection with Work Function Sensors, IMCS Proc. Beijing, 1998

    Google Scholar 

  3. V. Henrich, P.A. Cox, The Surface Science of Metal Oxides, Cambridge Univ. Press, 1994

    Google Scholar 

  4. K. D. Schierbaum, U. Weimar, W. Göpel, R. Kowalkowski, Conductance, work funktion and catalytic activity of Sn02-based gas sensors, Sens. Act. B, 3, 205–214, 1991

    Article  Google Scholar 

  5. P. Bergveld, Development of an ion-sensitive solid state device for neurophysio-1 ogical measurements, IEEE Trans. Biomed. Eng., 17, 70–71,1970

    Article  CAS  Google Scholar 

  6. T. Doll, I. Eisele, Gas Detection with Work Function Sensors, in Chemical Microsensors and Applications, Stephanus Büttgenbach, Editor, Proceedings of SPIE Vol. 3539, 96–106, 1998

    Google Scholar 

  7. Th. Wolkenstein, The Electron Theory of Catalysis on Semiconductors, McMillan, N.Y. 1963

    Google Scholar 

  8. P. B. Weisz, Effects of Electronic Charge Transfer between Adsorbate and Solid on Chemisorption and Catalysis, J. Chem. Phys. 21,9,1531–1538,1953

    Article  CAS  Google Scholar 

  9. W. Hellmich, Feldeffektinduzierte Empfindlichkeitsstuerung bei mikromechanisch hergestellten Halbleitergassensoren auf SnO2-Basis, Ph.D. Thesis, Universität der Bundeswehr, Munich, 1996

    Google Scholar 

  10. M.J. Madou, S.R. Morrison, Chemical Sensing with Solid State Devices, Academic Press Boston, N.Y., 1989

    Google Scholar 

  11. S.R. Morrison, Surf. Sci. 20, 110, 1971

    CAS  Google Scholar 

  12. F.F. Wolkenstein, W. B. Sandomirski, Dokl. Acad. Nauk. SSSR, 118, 980–982, 1958

    Google Scholar 

  13. V. G. Baru, F. Wolkenstein, Dokl. Acad. Nauk. SSSR, 168, 1314–1317, 1966

    Google Scholar 

  14. P.Mark, J. Phys. Chem. Solids, 29, 689, 1968

    Article  CAS  Google Scholar 

  15. S.M. Kogan, Adsorbed Particle Statistics in Electronic Theory of Chemisorption, J. Fiz. Chim. 33, 156, 1959, cited from Russian in: H. Geistlinger, Accumulation layer model for Ga203 thin film, Sens. Act. B, 18/19,125-131, 1994

    CAS  Google Scholar 

  16. P.S. Davids, A. Saxena, D.L. Smith, J. Appl. Phys. 78,4244,1995

    Article  CAS  Google Scholar 

  17. Hauffe, S.R. Morrison, Adsorption, de Gruyter 1974

    Google Scholar 

  18. S.M. Sze, Semiconductor Devices, Physics and Technology, J. Wiley & Sons, N.Y. 1985

    Google Scholar 

  19. A.J. Bennet, C.B. Duke, Phys. Rev. 188, 1060, 1941

    Article  Google Scholar 

  20. G. Paasch, M. Hietschold, in: Electronentheorie der Metalle, P. Ziesche, G. Lehman (Eds.), Springer Berlin, 402–466, 1983

    Google Scholar 

  21. N.D. Lang, W. Kohn, Theory of Metal Surfaces: Work Function, Phys. Rev. B, 3, 4, 1215–1223, 1971

    Article  Google Scholar 

  22. K. Besocke, B. Krahl-Urban, H. Wagner, Dipole Moments Associated with Edge Atoms; A Comparative Study on Stepped Pt, Au and W Surfaces, Surf. Sci., 68, 39–46, 1977

    Article  CAS  Google Scholar 

  23. I.N. Stranski, L. Krastanov, Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl lib, 146, 797,1938

    CAS  Google Scholar 

  24. R. Nada, A.C. Hess. C Pisani, Topological Defects at the (001) Surface of MgO: Energetics and Reactivity, Surf. Sci. 336, 353–361, 1995

    Article  CAS  Google Scholar 

  25. T. Wolkenstein, Electronic Processes on Semiconductor Surfaces During Chemisorption, Plenum, N-Y. 1991

    Google Scholar 

  26. A. Neubecker, T. Pompl, T. Doll, W. Hansen, I. Eisele, Ozone Enhanced Molecular Beam Deposition of Nickel Oxide (NiO) for Sensor Applications, Thin Solid Films, 310,19–23,1997

    Article  CAS  Google Scholar 

  27. D.N. Furlong, F. Rouquerol, J. Rouquerol, K.S.W. Sing, J. Chem. Soc. Faraday Trans, 1, 76, 774, 1980

    Google Scholar 

  28. T. Doll, R. Winter, T. Stimpel, H. Baumgärtner, Basics of Reproducible Work Function Gas Sensing with Metal Oxides under Environmental Conditions, Euros. XIII Proc. The Hague, 1999

    Google Scholar 

  29. E. De Fresart, J. Darville, J. M. Gilles, Influence of the Surface Reconstruction on the Work Function and Surface Conductance of (110) Sn02, App. Surf. Sci., 11/12, 637–651, 1982

    Article  Google Scholar 

  30. S. Z. Roginskij, Adsorption und Katalyse an inhomogenen Oberflächen, Akademie Verlag, Berlin 1959

    Google Scholar 

  31. T. Doll, K. Scharnagl, R. Winter, M. Bögner, I. Eisele, B. Ostrik, M. AtSchöning, Work Function Gas Sensors-Reference Layers and Signal Analysis, Eurosensors XII Proc. 1998

    Google Scholar 

  32. T. Doll, A. Neubecker, I. Eisele, D. Mutschall, E. Obermeier, Design of Metal Oxide Layers for Workfunction and Conductivity Sensors, IMCS Proceedings, 1996

    Google Scholar 

  33. R. Winter, K. Scharnagl, A. Fuchs, M. Boegner, T. Doll, I. Eisele, MBE-grown Indium Oxide and Aluminum Indium Oxide Films for Room Temoperatures Gas Sensors, IMCS Proc. Peking, 1998

    Google Scholar 

  34. A.V. Rzahnov, Y.F. Novototskii-Vlasov, I.G. Neizvestnyi, Zh. Tekh. Fiz, 17, 2440, 1957 resp. A.V. Rzahnov, Electronic Processes at Semiconductor Surfaces (English from Russian), Nauka, Moskau, 1971

    Google Scholar 

  35. V.l. Lyashenko, O.A. Serba, I.I. Stepko, Dokl. Akad. Nank. Ukr. SSR, 3, 350, 1962

    Google Scholar 

  36. E.P. Mikheeva, N.P. Keier, Kinet. Katal, 5, 748, 1964

    CAS  Google Scholar 

  37. S.A. Hoenig, J.R. Lane, Chemisorption of Oxygen on Zinc Oxide, Effect of a DC Electric Field, Surf. Sci. 11, 163–174, 1968

    CAS  Google Scholar 

  38. M. Constatinescu. E. Segal, M. Vass, Rev. Roum. Chim. 21, 503, 1976

    Google Scholar 

  39. M. Theodorescu, M. Vass, E: Segal, Zh. Fiz. Khim. 52, 3071, 1978

    Google Scholar 

  40. G. Heiland, Homogeneous Semicondcting Gas Sensors, Sens. Act. 2, 227–233,1985

    Google Scholar 

  41. Helmut Geistlinger, Interface and surface statistics for a Schottky-barrier gas sensor, Sens. Act. B, 7, 619–625, 1992

    Article  Google Scholar 

  42. L.I. Popova, S.K. Andreev, V.K. Guoerguiev, N.D. Stoyanov, Voltage Dependence of Gas-Sensing Behaviour of Sn02-Gate FETs, Sens. Act. B, 18/19, 543–545, 1994

    Article  Google Scholar 

  43. W. Andrejewski, M. Honke, K. Masch, R. Albrecht, Einrichtung für die Messung von Zustandsgrößen in Gasen mit zumindest einem Halbleiter Gassensor, German Patent DE 4401570 Al, 1995

    Google Scholar 

  44. M. Hausner, J. Zacheja, J. Gerblinger, J. Binder, Vorrichtung und Verfahren zur Steuerung der Selektivität von gassensitiven chemischen Verbindungen über externe Potentiale, German Patent DE 4442396 Al, 1996

    Google Scholar 

  45. F. Schwierz and D. Nuernbergk, The PROSA Simulation System, NATO Advanced Study Institute Silicon-Germanium High Speed Electronics, From Basic Physics to Applications, Erice, Italy, 1995.

    Google Scholar 

  46. M. Scheinen, Diploma Thesis, Technische Universität Ilmenau, 2002

    Google Scholar 

  47. T. Doli, Mikrogassensoren auf der Basis der Austrittsarbeitsmessung, Habilitation Thesis, Universität der Bundeswehr Munich, 1998

    Google Scholar 

  48. F. Winquist, A. Spetz, M. Armgarth, C. Nylander, I. Lundström, Modified Palladium Metal-Oxide-Semiconductor Structures with Increased Ammonia Gas Sensitivity, Appl. Phys. Let. 43, 839–841,1983

    Article  CAS  Google Scholar 

  49. S. Drost, H.E. Endres, E. Obermeier, The development of Gas-Sensing MOSFETs using ORMOSILES, 2nd IMCS Proa, 439–442,1986

    Google Scholar 

  50. P.M. Burr, P.D. Jeffrey et al. Gassensitive Field Effect Transistor Utilizing a Thin Film of Lead Phtalocyanine as the Gate Material, Thin Sol. Films, 151, LI 11–113, 1987

    Article  Google Scholar 

  51. G. Blackburn, M. Levi, J. Janata, Appl. Phys. Let., 43, 7, 1983

    Article  Google Scholar 

  52. B. Flietner, T. Doll, J. Lechner, I. Eisele, Adsorption induced Gas Transport Phenomena in Narrow Channels Recorded with Work Function Detectors, Jor. Vac. Sei. Tec, A 14(2), 1996

    Google Scholar 

  53. I. Eisele, B. Flietner, T. Doll, Verfahren zum spacerfreien, hybriden Aufbau von Luftspalt und Gate Feldeffekttransistoren (SGFET) sowie nach dem Verfahren hergestellte Bauelemente, German Patent DE 4239319 C2, 1996

    Google Scholar 

  54. S. Drost, Gassensoren auf der Basis von Feldeffekttransistoren mit Heteropoly siloxanschichten, Ph. D. Thesis, Technical University MĂĽnchen, 1991

    Google Scholar 

  55. M. Bögner, A. Fuchs. K. Scharnagl, R. Winter, T. Doli, I. Eisele, Electrical Field Impact on the Gas Adsorptivity of Thin Metal Oxide Films, Appl. Phys Let., 73/17, 1998

    Google Scholar 

  56. M. Bögner, A. Fuchs, K. Scharnagl, R. Winter, T. Doll, I. Eisele, Measuring the Electroadsorptive Effect with HSGFET, Verh. DPG (VI) 33, 871–872, 1998

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bögner, M., Doll, T. (2003). Introduction to the Electroadsorptive Effect and its Applications. In: Doll, T. (eds) Advanced Gas Sensing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8612-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8612-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4647-0

  • Online ISBN: 978-1-4419-8612-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics