Minimax Methods for Inequality Problems

  • D. Goeleven
  • D. Motreanu
  • Y. Dumont
  • M. Rochdi
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 69)

Abstract

We know from Chapter 2 that, if we intend to consider concrete problems in unilateral Mechanics involving both monotone and nonmonotone unilateral boundary (or interior) conditions, then we have in general to deal with a nonsmooth and nonconvex energy functional — expressed as the sum of a locally Lipschitz function \(\Phi :X \to \mathbb{R}\) and a proper, convex and lower semi-continuous function \(\psi :X \to \mathbb{R} \cup \left\{ { + \infty } \right\}\) — whose critical points are defined as the solutions of the variational-hemivariational inequality

Keywords

Manifold Assure Bedding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • D. Goeleven
    • 1
  • D. Motreanu
    • 2
  • Y. Dumont
    • 1
  • M. Rochdi
    • 1
  1. 1.IREMIA, University of La ReunionFrance
  2. 2.University of PerpignanFrance

Personalised recommendations