Evaluation Of Shear Relaxation Time And Derived Parameters From Ultrasonic Velocity Measurements Of Cu(I) And Some Tetraalkyl Ammonium Salts In Binary Organic Mixtures To Study Various Structural Effects

  • Parvinder Singh
Part of the Acoustical Imaging book series (ACIM, volume 26)


The study of ion-solvation has attracted the attenuation of many workers during the last few years (1–8). In case of binary solvent mixtures both the solvent components play an important role towards solvation of ions. The physical extreme of solvation is the transfer of an ion from vacuum to the solvent while the chemical extreme of solvation describes the stoichiometric chemical reaction with the solvent. The behavior of electrolytes in solutions mainly depends on the ion-ion and ion-solvent interactions. Ion-ion interaction in general, is stronger than the ion-solvent interactions. Ion-ion interaction in dilute electrolytic solutions is well understood by ion-solvent interaction still remain partially explained. The solvation behavior of ions in mixed solvent has become an important subject to study the structural effects of many compounds (9–19). Binary mixture of water with organic solvents have been frequently used for the study of electrolytic solutions. In such solvent mixtures the solvent structural effects are generally very strong. Consequently, ion solvation effects are overshadowed by the solvent structural effects. In order to minimize solvent structural effects attempts had been made for the study of ion-solvent interactions in binary mixtures of non-aqueous solvents with a non-polar component (20–25). The non-polar component of the solvent mixture played no significant role in ion solvation except to change the solvent properties such as dielectric constant and viscosity of the medium.


Binary Mixture Ultrasonic Velocity Ammonium Perchlorate Isentropic Compress Ibility Sodium Perchlorate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Pistoia and G. Pecci, J. Phys. Chem.741450 (1970).CrossRefGoogle Scholar
  2. 2.
    D.F. Evans and I.M<. McElory, J. Solution Chem.4, (1975)Google Scholar
  3. 3.
    S. Schiavo, R.M. Fuoss, G. Marrousu and G. Guida, J. Solution Chem.8557 (1979)CrossRefGoogle Scholar
  4. 4.
    MD. Jackson and W.R. Gilkerson, J. Am. Chem. Soc.101329 (1979)Google Scholar
  5. 5.
    A. Dellville, C. Detellier, A. Gerstmans, and P. Laszlo, Helv. Chim. Acta64547 (1981)CrossRefGoogle Scholar
  6. 6.
    D.S. Gill, A.N. Sharma and H. Schneider, J. Chem. Soc. Faraday Trans. 178465 (1982)CrossRefGoogle Scholar
  7. 7.
    T. Solomon, H. Elemu and B. Hundhammer, J. Electroanal. Chem. Interfac. Electrochem.169303 (1984)CrossRefGoogle Scholar
  8. 8.
    N. Podadopolos and G. Ritzoulis, J. Solution Chem.16644 (1978)Google Scholar
  9. 9.
    M. Holz, J. Chem. Soc. Faraday Trans. 174644 (1978)CrossRefGoogle Scholar
  10. 10.
    G. Petrella, M. Petrella, M. Castagnolo, A. Dell’Atti and A. DeGiglio, J. Solution. Chem.10129 (1981)CrossRefGoogle Scholar
  11. 11.
    A. Sacco, A. DeGiglio, A. Dell’Atti and M. Castagnolo, J. Chem. Soc. Faraday Trans, 179431 (1983)CrossRefGoogle Scholar
  12. 12.
    N.C. Dey, B.K. Saikia and I. Haque, Trans. SEAST1849 (1983): Chem Abstr. 98,111096z (1983)Google Scholar
  13. 13.
    D. Feakins, R.D. O’Neill and W. E. Waghorne, J. Chem. Soc. Faraday Trans. 1792289 (1983)CrossRefGoogle Scholar
  14. 14.
    N.D. Dey, G. Jumar, B.K. Saikia and I. Jaque, J. Solution Chem1449 (1985)CrossRefGoogle Scholar
  15. 15.
    J. Narahari and K. Laxminarayana, Bull Electrochem2527 (1986)Google Scholar
  16. 16.
    R.L. Blokhra and S. Jumar, J. Indian Chem Soc. 63702 (1986)Google Scholar
  17. 17.
    V.N. Timofeeva, G.I. Pankrotova, E.G. Timofeeva and O.P. Nesterova, Koord. Khim13535 (1987) Chem, 107, 47079a (1987)Google Scholar
  18. 18.
    P. Kyselka, Z. Havlas and I. Salmo, Collect, Czeck. Chem. Commun. m5214 (1982) Chem Abstr. 10, 144937r (1987)CrossRefGoogle Scholar
  19. 19.
    G.I. Pankrotova, E.G. Timofeeva and O.P. Nesterova, Koord Khim. 13346 (1987); Chem. Abstr. 107, 47080u (1987)Google Scholar
  20. 20.
    P.H. Tawari and G.P. Johari, J. Phys. Chem.692857 (1967)CrossRefGoogle Scholar
  21. 21.
    A.M. Shkodin, N.K. Levitshaya and E.P. Nikishkaya, Electrochim5705 (1969)Google Scholar
  22. 22.
    A. D’yunnik, A.M. Zholnovach and A.M. Shkodin, Electrokhimiya121334 (1976); Chem. Abstr. 85,149822g (1976)Google Scholar
  23. 23.
    I.N. V’ynnik, A.M. Zholnovach and A.M. Shkodin, Electrokhimiya121334 (1976); Chem. Abstr. 85, 149822g (1976).Google Scholar
  24. 24.
    I.A. Esikova and S.S. Ufit, Zh. Fiz, Khim. 56856 (1982); Chem. Abstr. 96, 224149a (1982).Google Scholar
  25. 25.
    M.B. Sekhri, PhD. ThesisHimachal Pradesh University, Shimla (1983).Google Scholar
  26. 26.
    D. Singh and J.P. Aggarwal, Z. Phys. Chem. (Frankfurt Main) 73144 (1970)CrossRefGoogle Scholar
  27. 27.
    A. D’Apprano, I.D. Donato and E. Caponetti, J. Solution Chem.3371 (1974).CrossRefGoogle Scholar
  28. 28.
    H. Scheider, Topics in Current Chemestry (Sptringer, Berlin68103 (1976).Google Scholar
  29. 29.
    L. Rodchucser and H. Schneider, Z. Phys. Chem (N.F.)100119 (1976)CrossRefGoogle Scholar
  30. 30.
    C. Detellier, A. Gerstmas, and P. Laszlo, Inorg, Nucl. Chem. Letters1593 (1979)CrossRefGoogle Scholar
  31. 31.
    H.J. Gores and J. Barthel, J. Solution Chem.9939 (1980)CrossRefGoogle Scholar
  32. 32.
    V.V. Giridhar and C. Kaiidas, Indian J Chem.22A224 (1983)Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Parvinder Singh
    • 1
  1. 1.Department of ChemistryGov’t College for GirlsChandigarhINDIA

Personalised recommendations