Investigation Of The Surface Microstructure Of The Polyamide-Hydroxyapatite And Polyethylene-Hydroxyapatite Bone Implants With Acoustic Microscopy Methods

  • R. Gr. Maev
  • A. F. Denisov
  • A. I. Volozhin
  • A. I. Denisova
  • L. A. Denisova
  • E. Yu. Maeva
  • A. P. Krasnov
  • V. K. Popov
  • A. B. Popova
  • E. Yu. Bakulin
Part of the Acoustical Imaging book series (ACIM, volume 26)

Abstract

Polymeric composites are widely used in the restorative surgery for the bone defect replacement. The most significant aspect of implant design is the biological and physico-mechanical compatibility of composite properties with the properties of the replaced tissue. Medical polymeric composites, as a rule, are polycomponent materials with the heterogeneous surface. Since the superficial properties substantially predetermine the success of osteointegration in the interface area, the evaluation of the chemical composition, physical properties and microstructure of the implant surface is of paramount importance.

Keywords

Fatigue Polyethylene Agglomeration Hydroxyapatite Photography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Denisova L.A., Matveichuk I.V., Denisov-Nikolsky Yu.I., Maev R.G., Denisov A.A., Maeva E.Yu., 2001, Application of the acoustic microscopy methods for the investigation of compact bone microstructure and mechanical properties. Abstracts of the Medical Physics Int.Symp., Moscow, part 7:70.Google Scholar
  2. Enikolopov N.S., Kolosov O.V., Maeva E.Yu., Maev R.G., Novikov D.D., 1987, Investigation of the polymer blends heterogeneity with the acoustic microscopy methods. Dokl.USSR Acad. Sci.292,6:1418.Google Scholar
  3. Hoppe M., 1985, Design and performance of the Leitz Elsam high-resolution acoustic microscope. Proc.lst Joint Soviet-German Symp. on microscope photometry and acoustic microscopy in science. Moscow, 13–18.Google Scholar
  4. Lee S.G., Joo C.W., 1999, The crystallization and impact properties of high strength polyethylene fiber reinforced LLDPE composites. Polymer and Polymer Composites7, 3:195.Google Scholar
  5. Lisy F., Hiltner A., Baer E., Katz J.L., Meunier A., 1994, Application of scanning acoustic microscopy to polymeric materials. J.Appl.Polymer Sci.52:329.Google Scholar
  6. Maev R.G., Denisova L.A., Maeva E.Yu., Denisov A.A., 2000, New data on histology and physico-mechanical properties of human tooth tissue obtained with acoustic microscopy. Ultrasound Med.& Biol., submitted.Google Scholar
  7. Maev R.G., Maximovsky Yu.M., Denisova L.A., Maeva E.Yu., Denisov A.A., Chirkova T.D., Domyshev D.A., 2000, Acoustic microscopy-new method for tooth tissue investigation. “Stomatology”79,5:14.Google Scholar
  8. Maeva E.Yu., 1997, Polymer blends microstructure and properties investigation with the acoustic microscopy methods. Ph.D. Thesis, Moscow.Google Scholar
  9. Maslov K.I., 1992, Acoustic Scanning microscope for investigation of subsurface defects. Acoustical ImagingPlenum Press, N.Y.-London,19: 645.Google Scholar
  10. Perepechko I.I.,1973, Acoustic methods in polymer investigation. Chemistry, Moscow.Google Scholar
  11. Povstugar V.I., Kodopov V.I., Mikhailova S.S., 1988, Structure and properties of the polymer materials surface. Chemistry, Moscow.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • R. Gr. Maev
    • 1
  • A. F. Denisov
    • 1
  • A. I. Volozhin
    • 2
  • A. I. Denisova
    • 1
  • L. A. Denisova
    • 1
  • E. Yu. Maeva
    • 1
  • A. P. Krasnov
    • 3
  • V. K. Popov
    • 3
  • A. B. Popova
    • 3
  • E. Yu. Bakulin
    • 1
  1. 1.Emanuel’s Institute for Biochemical PhysicsRASMoscow
  2. 2.State Medical Dental UniversityMoscow
  3. 3.Nesmeyanov’s Institute for Elementorganic CompoundsRASMoscow

Personalised recommendations