Skip to main content

Abstract

α-Lactalbumin (α-La) is a unique protein component of milk whey in all mammalian subdivisions, the eutherians, marsupials and monotremes. Following its early isolation by Sørensen and Sørensen (1939), α-La was used extensively as a model in numerous studies of the biophysical properties of proteins (see McKenzie, 1967 for a review of this earlier work). Interest in α-La was enhanced in the late 1960s by the discovery of its biochemical function as a specificity regulator in lactose synthase (Brodbeck and Ebner, 1966; Brodbeck et al., 1967; Brew et al., 1968), and the observation that it is homologous with the well-characterized type-c lysozymes (Lz) (Brew and Campbell, 1967; Brew et al., 1967). It was not until 1980 that α-La was found to be a calcium metalloprotein (Hiroaka et al., 1980) in which the calcium ion has been found to have an unusual crucial role in folding and structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acharya, K.R., Stuart, D.I., Walker, N.P.C., Lewis, M. and Phillips, D.C. (1989) Refined structure of baboon α-lactalbumin at 1.7 A resolution. Comparison with c-type lysozyme. J. Mol. Biol., 208, 99–127.

    CAS  Google Scholar 

  • Acharya, K.R., Stuart, D.I., Phillips, D.C. and Scheraga, H.A. (1990) A critical evaluation of the predicted and X-ray structures of a-lactalbumin. J. Protein Chem., 9, 549–63.

    CAS  Google Scholar 

  • Acharya, K.R., Ren, J.S., Stuart, D.I., Phillips, D.C. and Fenna, R.E. (1991) Crystal-structure of human a-lactalbumin at 1.7 Å resolution. J. Mol. Biol., 221, 571–81.

    CAS  Google Scholar 

  • Alexandrescu, A.T., Evans, P.A., Pitkeathly, M., Baum, J. and Dobson, C.M. (1993) Structure and dynamics of the acid-denatured molten globule state of α-lactalbumin: a two-dimensional NMR study. Biochemistry, 32, 1707–18.

    CAS  Google Scholar 

  • Almeida, R., Amado, M., David, L., Levery, S.B., Holmes, E.H., Merkx, G., Van Kessek, A.G., Rygaard, E., Hassan, H., Bennett, E. and Clausen, H. (1997) A family of human β4-galactosyltransferases. Cloning and expression of two novel UDP-galactose: β-N-acetylglucosamine β 1,4-galactosyltransferases, β4Gal-T2 and, β4Gal-T3. J. Biol. Chem., 272, 31979–91.

    CAS  Google Scholar 

  • Almeida, R., Levery, S.B., Mandel, U., Kresse, H., Schwientek, T., Bennett, E.P. and Claussen, H. (1999) Cloning and expression of a proteoglycan UDP-galactose: β-xylose β 1,4 galactosyltransferase I. A seventh member of the human β 4-galactosyltransferase gene family. J. Biol. Chem., 274, 26165–71.

    CAS  Google Scholar 

  • Aramini, J.M., Hiraoki, T., Grace, M.R., Swaddle, T.W., Chiancone, E. and Vogel, H.J. (1996) NMR and stopped-flow studies of metal ion binding to α-lactalbu-mins. Biochim. Biophys. Acta, 1293, 72–82.

    Google Scholar 

  • Bakker, H., Agterberg, M., Van Tetering, A., Koeleman, C.A.M., Van den Eijnden, D.H. and Van Die, I. (1994) A Lymnaea stagnalis gene, with sequence similarity to that of mammalian β 1,4-galactosyltransferases, encodes a novel UDP-GlcNAc:GlcNAc β-R β 1,4 N-acetylglucosaminyltransferase. J. Biol. Chem., 269, 30326–33.

    CAS  Google Scholar 

  • Bell, J.E., Beyer, T.A. and Hill, R.L. (1976) The kinetic mechanism of bovine milk galactosyltransferase. J. Biol. Chem., 251, 3003–13.

    CAS  Google Scholar 

  • Berliner, L. and Koga, K. (1987) α-Lactalbumin binding to membranes: evidence for a partially buried protein. Biochemistry, 26, 3006–9.

    CAS  Google Scholar 

  • Blake, C.C.R., Mair, G.A., North, A.C.T., Phillips, D.C. and Sarma, V.R. (1967) On the conformation of the hen egg-white lysozyme molecule. Proc. Roy. Soc. B, 167, 365–77.

    CAS  Google Scholar 

  • Breton, C, Bettler, E., Joziasse, D.H., Geremia, R.A. and Imberty, A. (1998) Sequence-function relationships of prokaryotic and eukaryotic galactosyltransferases. J. Biochem., 123, 1000–9.

    CAS  Google Scholar 

  • Brew, K. and Campbell, P.N. (1967) The characterization of the whey proteins of guinea-pig milk. Biochem. J., 102, 258–64.

    CAS  Google Scholar 

  • Brew, K. and Grobler, J.A. (1992) α-Lactalbumin. In Advanced Dairy Chemistry-1, 2nd edn. (P.F. Fox ed.) Elsevier Applied Sciences, London, pp. 191–229.

    Google Scholar 

  • Brew, K., Vanaman, T.C. and Hill, R.L. (1967) Comparison of the amino acid sequences of bovine α-lactalbumin and hen’s egg white lysozyme. J. Biol. Chem., 242, 3747–9.

    CAS  Google Scholar 

  • Brew, K., Vanaman, T.C. and Hill, R.L. (1968) The role of a-lactalbumin and the A protein in lactose synthetase: a unique mechanism for the control of a biological reaction. Proc. Natl. Acad. Sci. USA, 59, 491–7.

    CAS  Google Scholar 

  • Brodbeck, U. and Ebner, K.E. (1966) Resolution of a soluble lactose synthetase into two protein components and the solubilization of microsomal lactose synthetase. J. Biol. Chem. 241, 762–4.

    CAS  Google Scholar 

  • Brodbeck, U., Denton, W.L., Tanahashi, N. and Ebner, K.E. (1967) The isolation and identification of the B protein of lactose synthetase as a-lactalbumin. J. Biol. Chem., 242, 1391–97.

    CAS  Google Scholar 

  • Browne, W.J., North, A.C.T., Phillips, D.C., Brew, K., Vanaman, T.C. and Hill, R.L. (1969) A possible three-dimensional structure of bovine α-lactalbumin based on that of hen’s egg-white lysozyme. J. Mol. Biol., 42, 65–86.

    CAS  Google Scholar 

  • Busch, C, Hofman, F. Selzer, J., Munro, S., Jeckel, D. and Aktories, K. (1998) A common motif of eukaryotic glycosyltransferases is responsible for the enzyme activity of large clostridial cytotoxins. J. Biol. Chem., 273, 19556–72.

    Google Scholar 

  • Calderone, V., Giuffrida, M.G., Viterbo, D., Napolitano, L., Fortunate, D., Conti, A. and Acharya, K.R. (1996) Amino acid sequence and crystal structure of buffalo a-lactalbumin. FEBS Lett., 394, 91–95.

    CAS  Google Scholar 

  • Canet, D., Sunde, M., Last, A.M., Miranker, A., Spencer, A., Robinson, C.V. and Dobson, C.M. (1999) Mechanistic studies of the folding of human lysozyme and the origin of amyloidogenic behavior in its disease-related variants. Biochemistry, 38, 6419–27.

    CAS  Google Scholar 

  • Chandra, N., Brew, K. and Acharya, K.R. (1998) Structural evidence for the presence of a secondary calcium binding site in human a-lactalbumin. Biochemistry, 37, 4767–72.

    CAS  Google Scholar 

  • Chaudhuri, T.K., Horii, K., Yoda, T., Arai, M., Nagata, S., Terada, T.P., Uchiyama, H., Ikuri, T., Tsumoto, K., Kataoka, H., Matsushimi, M., Kuwajima, K. and Kumagai, I. (1999) Effect of the extra N-terminal methionine residue on the stability and folding of recombinant a-lactalbumin expressed in Escherichia coli. J. Mol. Biol., 285, 1179–94.

    CAS  Google Scholar 

  • Chrysina, E.D., Brew, K. and Acharya, K.R. (2000) Crystal structures of apo-and holo-bovine α-lactalbumin at 2.2 Å resolution reveal an effect or Ca2+ on interlobe interactions. J. Biol. Chem., 275, 37021–9.

    CAS  Google Scholar 

  • Dandekar, A.M. and Qasba, P.K. (1981) Rat a-lactalbumin has a 17-residue long COOH-terminal extension as judged by sequence analysis of the c-DNA clones. Proc. Natl. Acad. Sci. USA, 78, 4853–7.

    CAS  Google Scholar 

  • Davies, M.S., West, L.F., Davis, M.B., Povey, S. and Craig, R.K. (1987) The gene for human a-lactalbumin is assigned to chromosome 12q 13. Ann. Hum. Genet. , 51, 183–8.

    CAS  Google Scholar 

  • Do, K.Y., Do, S.I. and Cummings, R.D. (1995) α-Lactalbumin induces bovine milk β 1,4-galactosyltransferase to utilize UDP-GalNAc. J. Biol. Chem., 270, 18447–51.

    CAS  Google Scholar 

  • Ewbank, J.J. and Creighton, T.E. (1991) The molten globule protein conformation probed by disulfide bonds. Nature, 350, 518–20.

    CAS  Google Scholar 

  • Forge, V., Wijesinha, R.T., Balbach, J., Brew, K., Robinson, C.V., Redfield, C. and Dobson, CM. (1999) Rapid collapse and slow structural reorganization during the refolding of bovine α-lactalbumin. J. Mol. Biol., 288, 673–88.

    CAS  Google Scholar 

  • Gastinel, L.N., Cambillau, C. and Bourne, Y. (1999) Crystal structures of the bovine β4 galactosyltransferase catalytic domain and its complex with uridine diphosphogalactose. EMBO J., 18, 3546–7.

    CAS  Google Scholar 

  • Gerken, T.A. (1984) Amino group environments and metal-binding properties of carbon 13 reductively methylated bovine alpha-lactalbumin. Biochemistry, 23, 4688–97.

    CAS  Google Scholar 

  • Goda, S., Takano, K., Yamagata, Y., Katakura, Y. and Yutani, K. (2000) Effect of extra N-terminal residues on the stability and folding of human lysozyme expressed in Pichia pastoris. Prot. Engn., 13, 299–307.

    CAS  Google Scholar 

  • Godovac-Zimmermann, J., Conti, A. and Napolitano, L. (1988) The primary structure of donkey (Equus asinus) lysozyme contains the Ca(II) binding site of α-lactalbumin. Biol. Chem., 369, 1109–15.

    CAS  Google Scholar 

  • Greene, L., Grobler, J.A., Malinovskii, V.A., Tian, J., Acharya, K.R. and Brew, K. (1999) Stability, function and flexibility in a-lactalbumin. Protein Engn., 12, 581–7.

    CAS  Google Scholar 

  • Grobler, J., Rao, K.R., Pervaiz, S. and Brew, K. (1994) Sequences of two highly divergent canine type c lysozymes; implications for evolutionary interrelationships in the lysozyme/α-lactalbumin superfamily. Arch. Biochem. Biophys., 313, 360–6.

    CAS  Google Scholar 

  • Grobler, J.A., Wang, M., Pike, A. and Brew, K. (1994b) Study by mutagenesis of the roles of two aromatic clusters of a-lactalbumin in aspects of its action in the lactose synthase system. J. Biol. Chem., 269, 5106–14.

    CAS  Google Scholar 

  • Gussakovsky, E.E. and Haas, E. (1995) Two steps in the transition between the native and acid states of bovine a-lactalbumin detected by circular polarization of luminescence: evidence for a pre-molten globule state? Protein Sci., 4, 2319–26.

    CAS  Google Scholar 

  • Hakansson, A., Zhivotovsky, B., Orrenius, S., Sabharwal, H. and Svanborg, C. (1995) Apoptosis induced by a human milk protein. Proc. Natl. Acad. Sci. USA, 92, 8064–8.

    CAS  Google Scholar 

  • Hakansson, A., Andreasson, J., Zhivotovsky, B., Karpman, D., Orrenius, S. and Svanborg, C. (1999) Multimeric a-lactalbumin from human milk induces apoptosis through a direct effect on cell nuclei. Exp. Cell. Res., 246, 451–60.

    CAS  Google Scholar 

  • Hall, L., Emery, D.C., Davies, M.S., Parker, D. and Craig, R.F. (1987) Organization and sequence of the human a-lactalbumin gene. Biochem. J., 242, 735–42.

    CAS  Google Scholar 

  • Hanssens, I., Houthuys, C, Herreman, W. and Van Cauwelaert, F.H. (1980) Interaction of α-lactalbumin with dimyristoyl phosphatidylcholine vesicles. I. A micro-calorimetric and fluorescence study. Biochim. Biophys. Acta, 602, 539–57.

    CAS  Google Scholar 

  • Hanssens, I., Herreman, W., Van Ceunebroeck, J.C., Dangreau, H., Gielens, C, Preaux, G. and Van Cauwelaert, F.H. (1983) Interaction of alpha-lactalbumin with dimyristoyl phosphatidylcholine vesicles. III. Influence of the temperature and of the lipid to protein molar ratio on the complex formation. Biochim. Biophys. Acta, 728, 293–304.

    CAS  Google Scholar 

  • Hanssens, I., Van Ceunebroeck, J.C., Pottel, H., Preaux, G. and Van Cauwelaert, F.H. (1985) Influence of the protein conformation on the interaction between a-lactalbumin and dimyristoyl phosphatidylcholine vesicles. Biochim. Biophys. Acta, 817, 15–64.

    Google Scholar 

  • Harata, K. and Muraki, M. (1992) X-Ray structural evidence for a local helix-loop transition in a-lactalbumin. J. Biol. Chem., 267, 1419–21.

    CAS  Google Scholar 

  • Herreman, W., Van Tornout, P., Van Cauwelaert, F.H. and Hanssens, I. (1981) Interaction of α-lactalbumin with dimyristoyl phosphatidylcholine vesicles. II. A fluorescence polarization study. Biochim. Biophys. Acta, 640, 418–29.

    Google Scholar 

  • Hermann, G.F., Krezdorn, C, Malissard, M., Kleene, R., Paschold, H., Weuster-Botz, D., Kragl, U., Berger, E.G. and Wandrey, C. (1995) Large-scale production of a soluble human βl,4-galactosyltransferase using a Saccharomyces cerevisiae expression system. Protein Expr. Purif., 6, 72–8.

    Google Scholar 

  • Hill, R.L., Brew, K., Vanaman, T.C., Trayer, I.P. and Mattock, P. (1968) The structure, function and evolution of a-lactalbumin. Brookhaven Sympos. Biol., 21, 139–54.

    CAS  Google Scholar 

  • Hiroaka, Y., Segawa, T., Kuwajima, K., Sugai, S. and Murai, N. (1980) α-Lactalbumin: a calcium metallo-protein. Biochem. Biophys. Res. Commun., 93, 1098–104.

    Google Scholar 

  • Hopp, T.P. and Woods, K.R. (1979) Primary structure of rabbit a-lactalbumin. Biochemistry, 18, 5182–91.

    CAS  Google Scholar 

  • Ikeguchi, M., Kuwajima, K. and Sugai, S. (1986) Calcium-induced alteration in the unfolding behaviour of a-lactalbumin. J. Biochem., 99, 1191–201.

    CAS  Google Scholar 

  • Ishikawa, N., Chiba, T., Chen, L.T., Shimizu, A., Ikeguchi, M. and Sugai, S. (1998) Remarkable destabilization of recombinant α-lactalbumin by an extraneous N-terminal methionyl residue. Prot. Engn., 11, 3333–5.

    Google Scholar 

  • Khatra, B.S., Herries, D.G. and Brew, K. (1974) Some kinetic properties of humanmilk galactosyltransferase. Eur. J. Biochem., 44, 537–60.

    CAS  Google Scholar 

  • Kim, S., Baum, J. and Anderson, S. (1997) Production of correctly folded recombinant [13C, l5N]-enriched guinea pig [Val90]-α-lactalbumin. Protein Engn., 10, 455–62.

    CAS  Google Scholar 

  • Kim, J. and Kim, H. (1986) Fusion of phospholipid vesicles induced by a-lactalbumin at acid pH. Biochemistry, 25, 7867–74.

    CAS  Google Scholar 

  • Köhler, C, Hakansson, A., Svanborg, C, Orrenius, S. and Zhivotovsky, B. (1999) Protease activation in apoptosis induced by MAL. Exp. Cell. Res. 249, 260–8.

    Google Scholar 

  • Kornegay, J.R., Schilling, J.W. and Wilson, A.C. (1994) Molecular adaptation of a leaf-eating bird: stomach lysozyme of the hoatzin. Mol. Biol. Evol., 11, 921–8.

    CAS  Google Scholar 

  • Kraulis, P.J. (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr., 24, 946–50.

    Google Scholar 

  • Kronman, M.J. (1989) Metal ion binding and the molecular conformational properties of a-lactalbumin. CRC Crit. Rev. Biochem. Mol. Biol., 24, 565–667.

    CAS  Google Scholar 

  • Kronman, M.J., Sinha, S.K. and Brew, K. (1981) Characteristics of the binding of Ca2+ and other divalent metal ions to bovine alpha-lactalbumin. J. Biol Chem., 256, 8582–7.

    CAS  Google Scholar 

  • Kuwajima, K. (1989) The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins, 6, 87–103.

    CAS  Google Scholar 

  • Kuwajima, K., Mitani, M. and Sugai, S. (1989) Characterization of the critical state in protein folding-effects of guanidine hydrochloride and specific Ca2+ binding on the folding kinetics of a-lactalbumin. J. Mol. Biol., 206, 547–61.

    CAS  Google Scholar 

  • Kuwajima, K. (1996) The molten globule state of a-lactalbumin. FASEB J., 10, 102–9.

    CAS  Google Scholar 

  • Lala, A.K. and Kaul, P. (1992) Increased exposure of hydrophobic surface in molten globule state of α-lactalbumin. Fluorescence and hydrophobic photolabeling studies. J. Biol. Chem., 267, 19914–8.

    CAS  Google Scholar 

  • Lindahl, L. and Vogel, H.J. (1984) Metal-ion dependent hydrophobic-interaction chromatography of α-lactalbumin. Anal. Biochem., 140, 394–402.

    CAS  Google Scholar 

  • Lo, N.W., Shaper, J.H., Pevsner, J. and Shaper, N.L. (1998) The expanding β4-galactosyltransferase gene family: messages from the databanks. Glycobiology, 8, 517–26.

    CAS  Google Scholar 

  • Malinovskii, V.A., Tian, J., Grobler, J.A. and Brew, K. (1996) Functional site in a-lactalbumin encompasses a region corresponding to a subsite in lysozyme and parts of two adjacent flexible substructures. Biochemistry, 35, 9710–15.

    CAS  Google Scholar 

  • Malcolm, B.A., Rosenberg, S., Corey, M.J., Alien, J.S., de Baestelier, A. and Kirsch, J.F. (1989) Site-directed mutagenesis of the catalytic residues Asp-52 and Glu-35 of chicken egg white lysozyme. Proc. Natl. Acad. Sci. USA, 86, 133–7.

    CAS  Google Scholar 

  • McKenzie, H.A. (1967) Milk proteins. Adv. Prot. Chem., 22, 56–234.

    Google Scholar 

  • McKenzie, H.A. and White, F.H., Jr. (1991) Lysozyme and α-lactalbumin: structure, function, and interrelationships. Adv. Protein Chem., 41, 173–315.

    CAS  Google Scholar 

  • Messer M., Griffiths, M., Rismiller, P.D. and Shaw, B.C. (1997) Lactose synthesis in a monotreme, the echidna (Tachyglossus aculeatus): isolation and amino acid sequence of echidna a-lactalbumin. Comp. Biochem. Physiol., B 118, 403–10.

    CAS  Google Scholar 

  • Musci, G. and Berliner, L.J. (1985) Physiological roles of zinc and calcium binding to a-lactalbumin in lactose biosynthesis. Biochemistry, 24, 6945–8.

    CAS  Google Scholar 

  • Narimatsu, H., Sinha, S., Brew, K., Okayama, H. and Qasba, P.K. (1986) Cloning and sequencing of cDNA of bovine N-acetylglucosamine (β 1-4) galactosyltrans-ferase. Proc. Natl. Acad. Sci. USA, 83, 4720–4.

    CAS  Google Scholar 

  • Neeleman, A.P. and Van den Eijnden, D.H. (1996) α-Lactalbumin affects the acceptor specificity of Lymnaea stagnalis albumen gland UDP-GalKAc:GlcNAc β-R β→l,4-N-acetylgalactosaminyltransferase: synthesis of GalNAcβl→4Glc. Proc. Natl. Acad. Sci. USA, 93, 10111–6.

    CAS  Google Scholar 

  • Nitta, K. and Sugai, S. (1989) The evolution of lysozyme and a-lactalbumin. Eur. J. Biochem., 182, 111–8.

    CAS  Google Scholar 

  • Nitta, K., Tsuge, H., Sugai, S. and Shimazaki, K. (1987) The calcium-binding property of equine lysozyme. FEBS Lett., 223, 405–8.

    CAS  Google Scholar 

  • Palcic, M.M. and Hindsgaul, O. (1991) Flexibility in the donor substrate specificity of β-1,4 galactosyltransferase: application in the synthesis of complex carbohydrates. Glycobiology, 1, 205–9.

    CAS  Google Scholar 

  • Paulson, J.C. and Colley, K.J. (1989) Glycosyltransferases. Structure, localization and control of cell type-specific glycosylation. J. Biol. Chem., 264, 17615–8.

    CAS  Google Scholar 

  • Pepys, M.B., Hawkins, P.N., Booth, D.R., Vigushin, D.M., Tennent, G.A., Soutar, A.K., Totty, N., Nguyen, O., Blake, C.C.F., Terry, C.J., Feest, T.G., Zalin, A.M. and Hsuan, J.J. (1993) Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature, 362, 553–7.

    CAS  Google Scholar 

  • Permyakov, E.A., Yarmolenko, V.V., Kalinichenko, L.P., Morozova, L.A. and Burstein, E.A. (1981) Calcium binding to α-lactalbumin: structural rearrangement and association constant evaluation by means of intrinsic protein fluorescence changes. Biochem. Biophys. Res. Commun., 100, 191–7.

    CAS  Google Scholar 

  • Peters, C.W.B., Kruse, U., Pollwein, R., Grzeschik, K.-H. and Sippel, A.E. (1989) The human lysozyme gene: sequence organization and chromosomal localization. Cytogenet. Cell Genet., 51, 1059 (abstr.).

    Google Scholar 

  • Pike, A.C.W., Acharya, K.R. and Brew, K. (1996) Crystal structures of guinea-pig, goat and bovine α-lactalbumins highlight the enhanced conformational flexibility of regions that are significant for its action in lactose synthase. Structure, 4, 691–703.

    CAS  Google Scholar 

  • Powell, J.T. and Brew, K. (1976) A comparison of the interactions of galactosyltransferase with a glycoprotein substrate (ovalbumin) and with α-lactalbumin. J. Biol. Chem., 251, 3653–63.

    CAS  Google Scholar 

  • Prager, E.M. and Wilson, A.C. (1988) Ancient origin of a-lactalbumin from lysozyme: analysis of DNA and amino acid sequences. J. Mol. Evol., 27, 326–35.

    CAS  Google Scholar 

  • Prasad, R.V., Butkowski, R.J., Hamilton, J.W. and Ebner, K.E. (1982) Amino acid sequence of rat α-lactalbumin. A unique a-lactalbumin. Biochemistry, 21, 1479–82.

    CAS  Google Scholar 

  • Ptitsyn, O.B. (1995) Structures of folding intermediates. Curr. Opin. Struct. Biol., 5, 74–8.

    CAS  Google Scholar 

  • Qasba, P.K. and Kumar, S. (1997) Molecular divergence of lysozymes and a-lactalbumin. Crit. Rev. Biochem. Mol. Biol., 32, 255–306.

    CAS  Google Scholar 

  • Qasba, P.K. and Safaya, S.K. (1984) Similarities in the nucleotide sequences of rat α-lactalbumin and chicken lysozyme genes. Nature, 308, 377–80.

    CAS  Google Scholar 

  • Rao, K.R. and Brew, K. (1989) Calcium regulates folding and disulfide-bond formation in a-lactalbumin. Biochem. Biophys. Res. Commun., 163, 1390–6.

    CAS  Google Scholar 

  • Radford, S.E. and Dobson, C.M. (1995) Insights into protein folding using physical techniques: studies of lysozyme and α-lactalbumin. Phil. Trans. Roy. Soc., B 347, 17–25.

    Google Scholar 

  • Rajput, B., Shaper, N.L. and Shaper, J.H. (1996) Transcriptional regulation of murine β 1,4-galactosyltransferase in somatic cells. Analysis of a gene that serves both a housekeeping and a mammary gland-specific function. J. Biol. Chem., 271, 5131–42.

    CAS  Google Scholar 

  • Ren, J., Stuart, D.I. and Acharya, K.R. (1993) α-Lactalbumin possesses a distinct zinc binding site. J. Biol. Chem., 268, 19292–8.

    CAS  Google Scholar 

  • Richardson, R.H. and Brew, K. (1980) Lactose synthase. An investigation of the interaction site of α-lactalbumin for galactosyltransferase by differential chemical labelling. J. Biol. Chem., 255, 3377–85.

    CAS  Google Scholar 

  • Rodriguez, R., Menendez-Arias, L., Gonzalez de Buitrago, G. and Gavilanes, J.G. (1985) Amino acid sequence of pigeon egg-white lysozyme. Biochem. Int., 11, 841–3.

    CAS  Google Scholar 

  • Sato, T., Aoki, N., Matsuda, T. and Furukawa, K. (1998) Differential effect of a-lactalbumin on β-l,4-galactosyltransferase IV activities. Biochem. Biophys. Res. Commun., 244, 637–41.

    CAS  Google Scholar 

  • Sato, T., Furukawa, K., Bakker, H., Van den Eijnden, D.H. and Van Die, I. (1998) Molecular cloning of a human cDNA encoding β-1,4 galactosyltransferase with 37% identity to mammalian UDP-Gal:GlcNAc β-l,4-galactosyltransferase. Proc. Natl. Acad. Sci. USA, 95, 472–7.

    CAS  Google Scholar 

  • Schaer, J.J., Milos, M. and Cox, J.A. (1985) Thermodynamics of the binding of calcium and strontium to bovine a-lactalbumin. FEBS Lett., 190, 77–81.

    CAS  Google Scholar 

  • Schulman, B.A., Radfield, C, Peng, Z.Y., Dobson, CM. and Kim, P.S. (1995) Different subdomains are most protected from hydrogen exchange in the molten globule and native states of human α-lactalbumin. J. Mol. Biol., 253, 651–7.

    CAS  Google Scholar 

  • Schuhnan, B.A., Kirn, P.S., Dobson, CM. and Redfield, C. (1997) A residue-specific NMR view of the non-cooperative unfolding of a molten globule. Nature Struct. Biol., 4, 630–4.

    Google Scholar 

  • Schwientek, T., Almeida, R., Levery, S.B., Holmes, E.H., Bennett, E. and Clausen, H. (1998) Cloning of a novel member of the UDP-galactose β-N-acetylglucosamine β 1,4-galactosyl-transferase family, β4Gal-T4, involved in glycosphingolipid biosynthesis. J. Biol. Chem., 273, 28331–9340.

    Google Scholar 

  • Shaper, N.L., Shaper, J.H., Meuth, J.L., Fox, J.L., Chang, H., Kirsch, I.R. and Hollis, G.F. (1986) Bovine galactosyltransferase: identification of a clone by direct immunological screening of a cDNA expression library. Proc. Natl. Acad. Sci. USA, 83, 1573–7.

    CAS  Google Scholar 

  • Shaper, N.L., Meurer, J.A., Joziasse, D.H., Chou, T.D., Smith, E.J., Schnaar, R.L. and Shaper, J.H. (1997) The chicken genome contains two functional non-allelic β 1,4-galactosyltransferase genes. Chromosomal assignment to syntenic regions tracks fate of the two gene lineages in the human genome. J. Biol. Chem., 272, 31389–99.

    CAS  Google Scholar 

  • Shaper, N.L., Charron, M., Lo, N.W. and Shaper, J.H. (1998) β 1,4-galactosyltransferase and lactose biosynthesis: recruitment of a housekeeping gene from the non-mammalian gene pool for a mammary gland specific function. J. Mammary Gland Bio. Neoplasia., 3, 315–24.

    CAS  Google Scholar 

  • Shaw, D.C., Messer, M., Scrivener, A.M., Nicholas, K.R. and Griffiths, M. (1993) Isolation, partial characterisation, and amino acid sequence of α-lactalbumin from platypus (Ornithorhynchus anatinus) milk. Biochim. Biophys. Acta, 1161, 177–86.

    CAS  Google Scholar 

  • Shewale, J.G., Sinha, S.K. and Brew, K. (1984) Evolution of a-lactalbumins. The complete amino acid sequence of the a-lactalbumin from a marsupial (Macropus rufogriseus) and corrections to regions of sequence in bovine and goat a-lactalbumins. J. Biol. Chem., 259, 4974–56.

    Google Scholar 

  • Shur, B.D. (1993) Glycosyltransferases as cell adhesion molecules. Curr. Opin. Cell Biol., 5, 854–63.

    CAS  Google Scholar 

  • Smith, S.G., Lewis, M., Aschaffenburg, R., Fenna, R.E., Wilson, I.A., Sundaralingam, M., Stuart, D.I. and Phillips, D.C. (1987) Crystallographic analysis of the three-dimensional structure of baboon α-lactalbumin at low resolution. Homology with lysozyme. Biochem. J., 242, 353–60.

    CAS  Google Scholar 

  • Sorensen, M. and Sørensen, S.P.L. (1939) The proteins in whey. C. r. Trav. Lab. Carlsberg, Ser. Chim., 23, 55–99.

    CAS  Google Scholar 

  • Stacey, A., Schnieke, A., Kerr, M., Scott, A., McKee, C, Cottingham, L, Binas, B., Wilde, C. and Colman, A. (1995) Lactation is disrupted by a-lactalbumin deficiency and can be restored by human a-lactalbumin gene replacement in mice. Proc. Natl. Acad. Sci. USA, 92, 2835–9.

    CAS  Google Scholar 

  • Stinnakre M.G., Vilotte, J.L., Soulier, S. and Mercier, J.C. (1994) Creation and phenotypic analysis of α-lactalbumin-deficient mice. Proc. Natl. Acad. Sci. USA, 91, 6544–8.

    CAS  Google Scholar 

  • Stuart, D.I., Acharya, K.R., Walker, N.P.C., Smith, S.G., Lewis, M. and Phillips, D.C. (1986) α-Lactalbumin possesses a novel calcium binding loop. Nature, 324, 84–7.

    CAS  Google Scholar 

  • Svensson, M., Sabharwal, H., Hakansson, A., Mossberg, A.K., Lipniunas, P., Leifler, H., Svanborg, C. and Linse, S. (1999) Molecular characterization of α-lactalbumin folding variants that induce apoptosis in tumor cells. J. Biol. Chem., 274, 6388–96.

    CAS  Google Scholar 

  • Svensson, M., Hakansson, A., Mossberg, A.K., Linse, S. and Svanborg, C. (2000) Conversion of a-lactalbumin to a protein inducing apoptosis. Proc. Natl. Acad. Sxi. USA, 97, 4221–6.

    CAS  Google Scholar 

  • Tanaka, N. and Kunugi, S. (1996) Influence of zinc(II) binding on the structure of bovine a-lactalbumin. Int. J. Pept. Protein Res., 47, 1541–60.

    Google Scholar 

  • Teahan, C.G., McKenzie, H.A., Shaw, D.C. and Griffiths, M. (1991) The isolation and amino acid sequences of echidna (Tachyglossus aculeatus) milk lysozyme I and II. Biochem. Int., 24, 85–95.

    CAS  Google Scholar 

  • Thunnissen, A.M., Isaacs, N.W. and Dijkstra, B.W. (1995) The catalytic domain of a bacterial lytic transglycosylase defines a novel class of lysozymes. Proteins, 22, 245–58.

    CAS  Google Scholar 

  • Tsuge, H., Ago, H., Noma, M., Nitta, K., Sugai, S. and Miyano, M. (1992) Crystallographic studies of a calcium binding lysozyme from equine milk at 2.5 A resolution. J. Biochem., 111, 141–3.

    CAS  Google Scholar 

  • Uchiyama, H., Perez-Prat, E.M., Watanabe, K., Kumagai, I. and Kuwajima, K. (1995) Effects of amino acid substitutions in the hydrophobic core of a-lactalbumin on the stability of the molten globule state. Protein Engn., 8, 1153–61.

    CAS  Google Scholar 

  • Van Dael, H. (1998) Chimeras of human lysozyme and a-lactalbumin: an interesting tool for studying partially folded states during protein folding. Cell. Mol. Life Sci., 54, 1217–30.

    Google Scholar 

  • Van den Nieuwenhof, I.M., Schiphorst, W.E., Van Die, I. and Van den Eijnden, D.H. (1999a) Bovine mammary gland UDP-GalNAciGlcNAcbeta-R beta → 4-N-acetylgalactosaminyltransferase is glycoprotein hormone nonspecific and shows interaction with α-lactalbumin. Glycobiology, 9, 115–23.

    Google Scholar 

  • Van den Nieuwenhof, I.M., Schiphorst, W.E. and Van den Eijnden, D.H. (1999b) The lactose analog GalNAc βl→4Glc is present in bovine colostrum. Enzymatic basis for its occurrence. FEBS Lett., 459, 377–80.

    Google Scholar 

  • Veprintsev, D.B., Permyakov, E.A., Kalinichenko, L.P. and Berliner, L.J. (1996) Pb2+ and Hg2+ binding to α-lactalbumin. Biochem. Mol. Biol. Int., 39, 1255–65.

    CAS  Google Scholar 

  • Vilotte, J.L., Soulier, S., Mercier, J.-C, Gaye, P., Hue-Delahaie, D. and Furet, J.R. (1987) Complete nucleotide sequence of bovine a-lactalbumin gene: comparison with its rat counterpart. Biochimie, 69, 609–20.

    CAS  Google Scholar 

  • Warme, P.K., Momany, F.A., Rumball, S.V., Turtle, R.W. and Scheraga, H.A. (1974) Computation of structures of homologous proteins. α-Lactalbumin from lysozyme. Biochemistry, 13, 768–81.

    CAS  Google Scholar 

  • Wu, L.C., Schulman, B.A., Peng, Z.Y. and Kim, P.S. (1996) Disulfide determinants of calcium-induced packing in a-lactalbumin. Biochemistry, 35, 859–63.

    CAS  Google Scholar 

  • Yu, L., Cabrera, R., Ramirez, J., Wang, P.G., Malinovskii, V.A. and Brew, K. (1995) Chemical and enzymatic synthesis of glycoconjugates 1. Enzymatic galactosylation of conduritol B. Tetrahedron Lett., 36, 2897–900.

    CAS  Google Scholar 

  • Zhang, Y., Malinovskii, V.A., Fiedler, T. and Brew, K. (1999) Role of a conserved acidic cluster in bovine β 1,4 galactosyltransferase-l probed by mutagenesis of a bacterially-expressed recombinant enzyme. Glycobiology, 9, 815–22.

    CAS  Google Scholar 

  • Zu, H., Fukuda, M.N., Wong, S.S., Wang, Y., Liu, Z., Tang, Q. and Appert, H.E. (1995) Use of site-directed mutagenesis to identify the galactosyltransferase binding sites for UDP-galactose. Biochem. Biophys. Res. Commun., 206, 362–69.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brew, K. (2003). α-Lactalbumin. In: Fox, P.F., McSweeney, P.L.H. (eds) Advanced Dairy Chemistry—1 Proteins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8602-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8602-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47271-8

  • Online ISBN: 978-1-4419-8602-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics