Advertisement

Non-Bovine Caseins: Quantitative Variability and Molecular Diversity

  • P. Martin
  • P. Ferranti
  • C. Leroux
  • F. Addeo

Abstract

Caseins are phosphoproteins synthesised by mammary epithelial cells under multi-hormonal control as more or less large and stable particles, referred to as casein micelles and which appear like raspberries in electron micrographs. These spherical particles seem to be the result of aggregation of smaller discrete subunits or submicelles (Schmidt, 1982; Walstra, 1990), cemented by a calcium phosphate salt (colloidal calcium phosphate). Although this casein micelle model is widely accepted, it remains, in some circumstances, a topic of discussion and controversial debate. This issue will be dealt with in detail elsewhere in this book (Chapters 1 and 5). Casein micelles are present in the milk of all mammals and have a statistically broad distribution in size (Holt, 1985, 1992). In bovine milk, the most thoroughly studied milk to date, the casein micelle is considered to be comprised of submicelles, made of several casein molecules (15 to 20; Schmidt, 1982), arising from the expression of four single-copy autosomal genes which encode four distinct polypeptide chains (αs1-, β-, αs2- and κ-caseins).

Keywords

Water Buffalo Casein Micelle Camel Milk Casein Gene Nonsense Codon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addeo, F., Mauriello, R., Moio, L., Laezza, P., Chianese, L. and Di Luccia, A. (1992) Ovine casein variant identification using electrophoretic, immunochemical and Chromatographie techniques. Milchwissenschaft, 47, 283–7.Google Scholar
  2. Aigner, B., Pambalk, K., Reichart, IL, Besenfelder, IL, Bosze, Z., Renner, M., Gunzburg, W.H., Wolf, E., Muller, M. and Brem, G. (1999) Species-specific alternative splicing of transgenic RNA in the mammary glands of pigs, rabbits, and mice. Biochem. Biophys. Res. Commun., 257, 843–50.Google Scholar
  3. Alexander, L.J., Das Gupta, N.A. and Beattie, C.W. (1992) The sequence of porcine αs1-casein cDNA. Anim. Genet., 23, 365–7.Google Scholar
  4. Alexander, L.J., Stewart, A.F., MacKinlay, A.G., Kapelinskaya, T.V., Tkach, T.M. and Gorodesky, S.I. (1988) Isolation and characterization of the bovine kappa-casein gene. Eur. J. Biochem., 178, 395–401.Google Scholar
  5. Bal dit Solier, C, Drouet, L., Pignaud, G., Chevallier, C, Caen, J., Fiat, A.-M., Izquierdo, C. and Joliés, P. (1996) Effect of kappa-casein split peptides on platelet aggregation and on thrombus formation in the guinea pig. Thromb. Res., 81, 427–37.Google Scholar
  6. Baranyi, M., Aszodi, A., Devinoy, E., Fontaine, M.L., Houbedine, L.M. and Bosze, Z. (1996) Structure of the rabbit κ-casein encoding gene: expression of the cloned gene in the mammary gland of transgenic mice. Gene, 174, 27–34.Google Scholar
  7. Bloomfield, V.A. (1979) Association of protein. J. Dairy Res., 46, 241–52.Google Scholar
  8. Boisnard, M., Hue, D., Bouniol, C, Mercier, J.-C. and Gaye, P. (1991) Multiple mRNA species code for two non-allelic forms of ovine αs2-casein. Eur. J. Biochem., 201, 633–41.Google Scholar
  9. Bonsing, J. and Mackinlay, A.G. (1987) Recent studies on nucleotide sequences encoding the caseins. J. Dairy Res., 54, 447–61.Google Scholar
  10. Bouniol, C, Printz, C. and Mercier, J.-C. (1993) Bovine as2-casein D is generated by exon VIII skipping. Gene, 128, 289–93.Google Scholar
  11. Brignon, G., Mahé, M.F., Ribadeau-Dumas, B., Mercier, J.C. and Grosclaude, F. (1990) Two of the three genetic variants of goat αs1-casein which are synthesized at a reduced level have an internal deletion possible due to altered RNA splicing. Eur. J. Biochem., 193, 237–41.Google Scholar
  12. Brignon, G., Mahé, M.F., Grosclaude, F. and Ribadeau Dumas, B. (1989) Sequence of caprine αs1-casein and characterization ofthose of its genetic variants which are synthesized at a high level, αs1-CN A, B and C. Protein Seq. Data Anal, 2, 181–8.Google Scholar
  13. Brignon, G., Ribadeau Dumas, B., Mercier, J.C, Pelissier, J.P. and Das, B.C. (1977) Complete amino acid sequence of bovine alpha S2-casein. FEBS Lett., 76, 274–9.Google Scholar
  14. Buchheim, W., Lund, S. and Scholtissek, K. (1989) Comparative studies on the structure and size of casein micelles in the milk of different species. Kieler Milchwirtschaftliche Forschungsberichte, 41, 253–66.Google Scholar
  15. Caroli, A., Bolla, P., Pagnacco, G. and Fragh, A. (1989) Study on the genetic control of ovine Welsh phenotype. Proc. 24th Int. Zootech. Symp., Milan, pp. 117–9.Google Scholar
  16. Chanat, E., Martin, P. and Ollivier-Bousquet, M. (1999) Alpha(Sl)-casein is required for the efficient transport of beta-and kappa-casein from the endoplasmic reticulum to the Golgi apparatus of mammary epithelial cells. J. Cell Sci., 112, 3399–412.Google Scholar
  17. Chianese, L., Garro, G., Mauriello, R., Laezza, P., Ferranti, P. and Addeo, F. (1996a) Occurrence of five αs1-casein variants in ovine milk. J. Dairy Res., 63, 49–59.Google Scholar
  18. Chianese, L., Garro, Ferranti, P., Malorni, A., Addeo, F., Rabasco, A. and Molina Pons, A. (1995) Discrete phosphorylation generates the electrophoretic heterogeneity of ovine β-casein. J. Dairy Res., 62, 89–100.Google Scholar
  19. Chianese, L., Garro, G., Nicola, M.A., Mauriello, R., Ferranti, P, Pizzano, R., Cappuccio, U., Laezza, P., Addeo, F., Ramunno, L., Rando, A. and Rubino, R. (1993) The nature of β-casein heterogeneity in caprine milk. Lait, 73, 533–47.Google Scholar
  20. Chianese, L., Mauriello, R., Intorcia, N., Moio, L. and Addeo, F. (1992a) Determination of ovine casein heterogeneity using gel electrophoresis and immunochemical techniques. J. Dairy Res., 59, 39–47.Google Scholar
  21. Chianese, L., Mauriello, R., Intorcia, N., Moio, L. and Addeo, F. (1992b) New αs2-casein variant from caprine milk. J. Dairy Res., 59, 299–305.Google Scholar
  22. Clare, D.A. and Swaisgood, H.E. (2000) Bioactive milk peptides: a prospectus. J. Dairy Sci., 83, 1187–95.Google Scholar
  23. Coll, A., Folch, J.M. and Sanchez, A. (1995) Structural features of the 5′ flanking region of the caprine kappa-casein gene. J. Dairy Sci., 78, 973–7.Google Scholar
  24. Collet, C, Joseph, R. and Nicholas, K.J. (1992) Molecular characterization and in vitro hormonal requirements for expression of two casein genes from a marsupial. Mol. Endocrinol, 8, 13–20.Google Scholar
  25. Condorelli, G., Bueno, R. and Smith, R.J. (1994) Two alternative splice forms of the human insulin-like growth factor I receptor have distinct biological activities and internalization kinetics. J. Biol. Chem., 269, 8510–16.Google Scholar
  26. Craig, R.K., Mcllreavy, D. and Hall, R.L. (1978) Separation and partial characterization of guinea-pig caseins. Biochem. J., 173, 633–41.Google Scholar
  27. Cronin, M.A., Stuart, R., Pierson, B.J. and Patton, J.C. (1996) κ-Casein gene phylogeny of higher ruminants (Pecora artiodactyla) Mol. Phylogenet. Evol., 6, 295–311.Google Scholar
  28. Dalgleish, D.G., Home, D.S. and Law, A.J.R. (1989) Size-related differences in bovine casein micelles. Biochim. Biophys. Acta., 991, 383–7.Google Scholar
  29. Davies, D.T. and Law, A.J.R. (1983) Variation in the protein composition of bovine casein micelles and serum casein in relation to micellar size and milk temperature. J. Dairy Res., 56, 727–35.Google Scholar
  30. Dawson, S.P., Wilde, C.J., Tighe, P.J. and Mayer, RJ. (1993) Characterization of two novel casein transcripts in rabbit mammary gland. Biochem. J., 296, 777–84.Google Scholar
  31. Dev, B.C., Sood, S.M., DeWind, S. and Slattery, C.W. (1994) κ-Casein and β-caseins in human milk micelles: structural studies. Arch. Biochem. Biophys., 314, 329–36.Google Scholar
  32. Donnelly, W.J., McNeill, G.P., Buchheim, W. and McGann, T.C.A. (1984) A comprehensive study of the relationship between size and protein composition in natural bovine casein micelles. Biochim. Biophys. Acta, 789, 136–43.Google Scholar
  33. Edlund, A., Johansson, T., Ledvik, B. and Hansson, L. (1996) Structure of the human kappa-casein gene. Gene, 174, 65–9.Google Scholar
  34. Eperon, I.C., Ireland, D.C., Smith, R.A., Mayeda, A. and Krainer, A.R. (1993) Pathways for selection of 5′ splice sites by Ul snRNPs and SF2/ASF. EMBO J., 12, 3607–17.Google Scholar
  35. Erhardt, G. (1989) Isolierung und charaktrisierung von caseinfraktionen sowie deren genetische Varianten in schweinamilch. Milchwissenschaft, 44, 17–20.Google Scholar
  36. Ferranti, P., Lilla, S., Chianese, L. and Addeo, F. (1999) Alternative nonallelic deletion is constitutive of ruminant αs1-casein. J. Protein Chem., 18, 595–602.Google Scholar
  37. Ferranti, P., Scaloni, A., Caira, S., Chianese, L., Malorni, A. and Addeo, F. (1998a) The primary structure of water buffalo αs1-and β-casein: Identification of phosphorylation sites and characterization of a novel β-casein variant. J. Protein Chem., 17, 835–44.Google Scholar
  38. Ferranti, P., Chianese, L., Malorni, A., Migliaccio, F., Stingo, V. and Addeo, F. (1998b) The co-presence of deleted protein species generates the structural heterogeneity of ovine αs1-casein. J. Agr. Food Chem., 46, 411–6.Google Scholar
  39. Ferranti, P., Addeo, F., Malorni, A., Chianese, L., Leroux, C. and Martin P. (1997) Differential splicing of pre-messenger RNA produces multiple forms of goat αs1-casein. Eur. J. Biochem., 249, 1–7.Google Scholar
  40. Ferranti, P., Malorni, A., Nitti, G., Laezza., P., Pizzano, R., Chianese, L. and Addeo, F. (1995) Primary structure of ovine αs1-casein: localization of phosphorylation sites and characterization of genetic variants. J. Dairy Res., 62, 281–96.Google Scholar
  41. Ferranti, P., Pizzano, R., Garro, G., Caira, S., Chianese, L. and Addeo, F. (2001) Mass spectrometry-based procedure for the identification of ovine casein heterogeneity. J. Dairy Res., 68, 35–51.Google Scholar
  42. Ferretti, L., Leone, P. and Sgaramella, V. (1990) Long range restriction analysis of the bovine casein genes. Nucleic Acids Res., 18, 6829–33.Google Scholar
  43. Fiat, A.-M. and Jolies, P. (1989) Caseins of various origin and biologically active casein peptides and oligosaccharides: Structural and physiological aspects. Mol. Cell. Biochem., 87, 5–30.Google Scholar
  44. Fiat, A.-M., Jolies, J., Aubert, J.-P., Loucheux-Lefèbre, M.-H. and Jolies, P. (1980) Localisation and importance of the sugar part of human casein. Eur. J. Biochem., 111, 333–9.Google Scholar
  45. Fujiwara, Y., Miwa, M., Nogami, M., Okumura, K., Nobori, T., Suzuki, T. and Ueda, M. (1997) Genomic organization and chromosomal localization of the human casein gene family. Hum. Genet., 99, 368–73.Google Scholar
  46. Gatesy, J., Hayashi, G, Cronin, M.A. and Arctander, P. (1996) Evidence from milk casein genes that cetaceans are close relatives of hippopotamid artiodactyls. Mol. Biol. Evol., 13, 954–63.Google Scholar
  47. Gaye, P., Gautron, J.P., Mercier, J.C. and Hazé, G. (1977) N-Terminal sequences of the precursors of ovine caseins. Biochem. Biophys. Res. Commun., 79, 903–11.Google Scholar
  48. George, S., Clark, A.J. and Archibald, P. (1997) Physical mapping of the murine casein locus reveals the gene order as alpha-beta-gamma-epsilon-kappa. DNA Cell. Biol., 16, 477–84.Google Scholar
  49. Ginger, M.R. and Grigor, M.R. (1999) Comparative aspects of milk caseins. Compar. Biochem. Physiol., 124, 133–45.Google Scholar
  50. Grabowski, H., Le Bars, D., Chene, N., Attal, J., Malienou-Ngassa, R., Puissant, C. and Houdebine, L.M. (1991) Rabbit whey acid protein concentration in milk, serum, mammary gland extract and culture medium. J. Dairy Sci., 74, 4143–50.Google Scholar
  51. Groenen, M.A.M., Dijkhof, R.J.M., Verstege, A.J.M. and van der Poel, J.J. (1993) The complete sequence of the gene encoding bovine alpha-s2-casein. Gene, 123, 187–93.Google Scholar
  52. Grousclaude, F., Ricordeau, G., Martin, P., Remeuf, F., Vassal, L. and Bouillon, J. (1994) Du gène au fromage: le polymorphisme de la caséine αs1 caprine, ses effets, son évolution. Prod. Anim., 7, 3–19.Google Scholar
  53. Grusby, M.J., Mitchell, S.C., Nabavi, N. and Glimcher, L.H. (1990) Casein expression in cytotoxic lymphocytes-T. Proc. Natl. Acad., Sci., USA, 87, 6897–901.Google Scholar
  54. Hansson, L., Edlund, A., Johansson, T., Hernell, O., Strömqvist, M., Lindqvist, S., Lönnerdal, B. and Bergström, S. (1994) Structure of the human β-casein gene. Gene, 139, 193–9.Google Scholar
  55. Hayashi, Y., Ohmori, S., Ito, T. and Seo, H. (1997) A splicing variant of steroid receptor coactivator-1 (SRC-IE): the major isoform of SRC-1 to mediate thyroid hormone action. Biochem. Biophys. Res. Commun., 236, 83–7.Google Scholar
  56. Hayes, H., Petit, E., Bouniol, C. and Popescu, P. (1993) Localisation of the alpha-S2-casein gene (CASAS2) to the homeologous cattle, sheep and goat chromosomes 4 by in situ hybridization. Cytogenet. Cell. Genet., 64, 282–5.Google Scholar
  57. Hennighausen, L.G., Steudle, A. and Sippel., A.E. (1982) Nucleotide sequence of cloned cDNA coding for mouse ɛ-casein. Eur. J. Biochem., 126, 569–72.Google Scholar
  58. Heth, A.A. and Swaisgood, H.E. (1982) Examination of casein micelle structure by a method for reversible covalent immobilization. J. Dairy Sci., 65, 2047.Google Scholar
  59. Hobbs, A.A. and Rosen, J.M. (1982) Sequence of rat α-and γ-casein mRNAs: evolutionary comparison of the calcium-dependent rat casein multigene family. Nucleic Acid Res., 10, 8079–98.Google Scholar
  60. Holt, C. (1992) Structure an stability of bovine casein micelles. Adv. Prot. Chem., 43, 63–151.Google Scholar
  61. Holt, C. and Sawyer, L. (1988) Primary and predicted secondary structures of the caseins in relation to their biological functions. Prot. Eng., 2, 251–9.Google Scholar
  62. Holt, C. (1985) The size distribution of bovine casein micelles: A review. Food Microstruct., 4, 1–10.Google Scholar
  63. Johnsen, L.B., Rasmussen, L.K., Petersen, T.E. and Berglung, L. (1995) Characterization of three types of human αS1-casein mRNA transcripts. Biochem. J., 309, 237–42.Google Scholar
  64. Joliès, P. and Fiat, A.-M. (1979) The carbohydrate portions of milk glycoproteins. J. Dairy Res., 46, 187–91.Google Scholar
  65. Joliès, P., Loucheux-Lefebvre, M.H. and Henschen, A. (1978) Structural relatedness of kappa-casein and fibrinogen gamma-chain. J. Mol. Evol., 11, 271–7.Google Scholar
  66. Joliès, J., Fiat, A.-M., Schoentgen, F., Alais, C. and Jolies, P. (1974a) The amino acid sequence of sheep κ-A-casein. II. Sequence studies concerning the κ-A-caseinoglycopeptide and establishment of the complete primary structure of the protein. Biochem. Biophys. Acta, 365, 335–42.Google Scholar
  67. Joliès, J., Schoentgen, F., Hermann, J., Alais, C. and Joliès, P. (1974b) The sequence of sheep κ-casein: primary structure of para-kappa casein. Eur. J. Biochem., 46, 127–32.Google Scholar
  68. Jolivet, G., Devinoy, E., Fontaine, M.L. and Houdebine, L.M. (1992) Structure of the gene encoding rabbit alpha Sl-casein. Gene, 113, 257–62.Google Scholar
  69. Jones, W.K., Yu-Lee, L.Y., Clift, S.M., Brown, T.L. and Rosen, J.M. (1985) The rat casein multigene family. Fine structure and evolution of the β-casein gene. J. Biol. Chem., 260, 7042–50.Google Scholar
  70. Kanopka, A., Muhlemann, O. and Ahusjarvi, G. (1996) Inhibition by SR proteins of splicing of a regulated adenovirus pre-mRNA. Nature, 381, 535–8.Google Scholar
  71. Rappeler, S., Farah, Z. and Puhan, Z. (1997) Sequence analysis of Camelus dromedarius milk casein. J. Dairy Res., 65, 209–22.Google Scholar
  72. Koczan, D., Hobom, G. and Seyfert, H.M. (1991) Genomic organization of the bovine αsl-casein gene. Nucleic Acids Res., 18, 5591–6.Google Scholar
  73. Leroux, C. (1992) Analyse du Polymorphisme du Gène Caprin Codant la Caséine αsl et des Produits de sa Transcription. Application au Développement d’une Procédure de Typage Précoce des Animaux, PhD. Thesis, Université d’Orsay-Paris XI.Google Scholar
  74. Leroux, C. and Martin, P. (1996) The caprine αsl-and β-casein genes are 12-kb apart and convergently transcribed. Anim. Genet., 27, 93.Google Scholar
  75. Leroux, C, Mazure, N. and Martin, P. (1992) Mutation away from splice site recognition sequences might cis-modulate alternative splicing of goat αs1-casein transcript. Structural organization of the relevant gene. J. Biol. Chem., 267, 6147–57.Google Scholar
  76. Martin, P., Ollivier-Bousquet, M. and Grosclaude, F. (1999) Genetic polymorphism of caseins: a tool to investigate casein micelle organization. Int. Dairy J., 9, 163–71.Google Scholar
  77. Martin, P., Brignon, G., Furet, J.P. and Leroux, C. (1996) The gene encoding αs1-casein is expressed in human mammary epithelial cells during lactation. Lait, 76, 523–35.Google Scholar
  78. Martin, P. and Leroux, C. (1994) Characterization of a further αs1casein variant generated by exon skipping. Proc. 24th International Society of Animal Genetics Conference, Prague, Abstract E43 (p. 8).Google Scholar
  79. Martin, P. and Grosclaude, F. (1993) Improvement of milk protein quality by gene technology. Livestock Prod. Sci., 35, 95–115.Google Scholar
  80. Martin, P. (1993) Polymorphisme génétique des lactoproteines caprines. Lait, 73, 511–32.Google Scholar
  81. Martin, P. and Leroux, C. (1992) Exon-skipping is responsible for the 9 amino acid residue deletion occurring near the N-terminal of human β-casein. Biochem. Biophys. Res. Commun., 183, 750–7.Google Scholar
  82. Meisel, H. (1997) Biochemical properties of regulatory peptides derived from milk proteins. Biopolymers, 43, 119–28.Google Scholar
  83. Menon, R.S., Chang, Y.F., Jeffers, K.F., Jones, C. and Ham, R. (1992) Regional localization of human β-casein gene (CSN2) to 4pter-q21. Genomics, 13, 225–6.Google Scholar
  84. Menon, R.S., Chang, Y.F., Jeffers, K.F. and Ham, R.G. (1992) Exon-skipping in human β-casein. Genomics, 12, 13–7.Google Scholar
  85. Mercier, J.C. (1981) Phosphorylation of casein. Present evidence for an amino acid triplet code post-translationally recognized by specific kinases. Biochimie, 63, 1–17.Google Scholar
  86. Mercier, J.C. and Vilotte, J.L. (1993) Structure and function of milk protein genes. J. Dairy Sci., 76, 3079–98.Google Scholar
  87. Mercier, J.C, Grosclaude, F. and Ribadeau Dumas, B. (1971) Structure primaire de la caséine αs1 bovine. Séquence complète. Eur. J. Biochem., 23, 41–51.Google Scholar
  88. Miranda, G., Mahé, M.F., Leroux, C. and Martin, P. (2000) Proteomic tools to characterise the protein fraction of equine milk. Proc. Milk Protein Conference, 30th March-2nd April 2000, Vinstra, Norway.Google Scholar
  89. Nagy, E. and Maquat, L.E. (1998) A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem. Sci., 23, 198–9.Google Scholar
  90. Passey, R., Glenn, W. and Mackinlay, A. (1996) Exon skipping in the ovine alpha Sl-casein gene. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 114, 389–94.Google Scholar
  91. Petrilli, P., Pucci, P., Morris, H.R. and Addeo, F. (1986) Assignment of phospho-rylation sites in buffalo β-casein by fast atom bombardment mass spectrometry. Biochem. Biophys. Res. Comm., 140, 28–37.Google Scholar
  92. Pierre, A., Michel, F. and Le Graet, Y. (1995) Variation in size of goat milk casein micelles related to casein genotype. Lait, 75, 489–502.Google Scholar
  93. Persuy, M.A., Printz, C, Medrano, J.F. and Mercier, J.-C. (1999) A single nucleotide deletion resulting in a premature stop codon is associated with marked reduction of transcripts from a goat beta-casein null allele. Animal Genet., 30, 444–51.Google Scholar
  94. Persuy, M.A., Printz, C, Medrano, J.F. and Mercier, J.-C. (1996) One mutation might be responsible for the absence of beta-casein in two breeds of goats. Animal Genet., 27, 96.Google Scholar
  95. Persuy, M.A., Legrain, S., Printz, C, Stinnakre, M.G., Lepourry, L., Brignon, G. and Mercier, J.-C. (1995) High-level, stage-and mammary-tissue-specific expression of a caprine kappa-casein-encoding minigene driven by a beta-casein promoter in transgenic mice. Gene, 165, 291–6.Google Scholar
  96. Pirisi, A., Piredda, G., Corona, N., Mauriello, R., Caira, S., Ferranti, P., Addeo, F. and Chianese, L. (2000) Influence of somatic cells count on quality of ovine cheese, in Proceedings of Development Strategy for the Sheep and Goat Dairy Sector, Bulletin 354, International Dairy Federation, Brussels, p. 42.Google Scholar
  97. Pisano, A., Packer, N.H., Redmond, J.W., Williams, K.L. and Gooley, A.A. (1994) Characterization of O-linked glycosylation motifs in the glycopeptide domain of bovine κ-casein. Glycobiology, 4, 837–1994.Google Scholar
  98. Provot, C, Persuy M.-A. and Mercier J.-C. (1995) Complete sequence of the ovine β-casein-encoding gene and interspecies comparison. Gene, 154, 259–63.Google Scholar
  99. Rando, A., Pappalardo, M., Capuano, M., Di Gregorio, P. and Ramunno, L. (1996) Two mutations might be responsible for the absence of beta-casein in goat milk. Animal Genet., 27, 31.Google Scholar
  100. Rasmussen, L.K., Johnsen, L.B., Tsiora, A., Sorensen, E.S., Thomsen, J.K., Nielsen, N.C., Jakobsen, H.J. and Petersen, T.E. (1999) Disulphide-linked caseins and casein micelles. Int. Dairy J., 9, 215–8.Google Scholar
  101. Rasmussen, L.K., Due, H.A. and Petersen, T.E. (1995) Human αsl-casein: purification and characterization. Comp. Biochem. Physiol., 111B, 75–81.Google Scholar
  102. Remeuf, F. (1993) Influence du polymorphisme génétique de la caséine αs1 caprine sur les caractéristiques physico-chimiques et technologiques du lait. Lait, 73, 549–57.Google Scholar
  103. Ribadeau Dumas, B. and Brignon, G. (1993) Les protéines du lait de différentes espèces. In Progrès en Pédiatrie 10. Allergies Alimentaires, (J. Navarro and J. Schmitz eds.) Doin, Paris, France, pp. 27–39.Google Scholar
  104. Richardson, B.C. and Creamer, L.K. (1976) Comparative micelle structure. 5. The isolation and characterization of the major ovine caseins. N.Z. J. Dairy Sci. Technol, 11, 46–53.Google Scholar
  105. Richardson, B.C. and Mercier, J.-C. (1979) The primary structure of the ovine β-casein. Eur. J. Biochem., 99, 285–97.Google Scholar
  106. Rijnkels, M., Kooiman, P.M., de Boer, H.A. and Pieper, F.R. (1997a) Organisation of the bovine casein gene locus. Mamm. Genome, 8, 148–52.Google Scholar
  107. Rijnkels, M., Meershoek, E., de Boer, H.A. and Pieper, F.R. (1997b) Physical map and localization of the human casein gene locus. Mamm. Genome, 8, 285–6.Google Scholar
  108. Rijnkels, M., Wheeler, D.A., de Boer, H.A. and Pieper, F.R. (1997c) Structure and expression of the mouse casein gene locus. Mamm. Genome, 8, 9–15.Google Scholar
  109. Rijnkels, M., Kooiman, P.M., Krimpenfort, P.J.A., de Boer, H.A. and Pieper, F.R. (1995) Expression analysis of the individual bovine beta-, alpha s2-and kappa-casein genes in transgenic mice. Biochem. J., 311, 929–37.Google Scholar
  110. Russo, V. and Davoli, R. (1983) Polymorphism of ovine and caprine milk proteins. Proc. of Vth National Congress S.I.P.A.O.C.(Italian Society for the Pathology and Rearing of Goats and Ewes), Acireale, Italy, 9-11 December, pp. 541-555.Google Scholar
  111. Saito, T., Itoh, T. and Adachi, S. (1988) Chemical structure of neutral sugar chains isolated from human mature milk κ-casein. Biochim. Biophys. Acta, 964, 213–220.Google Scholar
  112. Saito, T. and Itoh, T. (1992) Variations and distributions of O-glycosidically linked sugar chains in bovine κ-casein, J. Dairy Sci., 75, 1768–1774.Google Scholar
  113. Sasaki, T., Sasaki, M. and Enami, J. (1993) Mouse γ-casein cDNA: PCR cloning and sequence analysis. Zoo. Sci., 10, 65–72.Google Scholar
  114. Schmidt, D.G. (1982) Association of caseins and casein micelle structure. In Developments in Dairy Chemistry, Vol. 1, (P.F. Fox ed.) Applied Science, London, pp. 61–86.Google Scholar
  115. Slattery, C.W. and Evard, R. (1973) A model for the formation and structure of casein micelles from subunits of variable composition. Biochim. Biophys. Acta, 317, 529–538.Google Scholar
  116. Smith, C.W.J. and Valcarcel, J. (2000) Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem. Sci., 25, 381–388.Google Scholar
  117. Smith, C.W., Chu, T.T. and Nadal-Ginard, B. (1993) Scanning and competition between AGs are involved in 3′ splice site selection in mammalian introns. Mol. Cell. Biol., 13, 4939–4952.Google Scholar
  118. Sood, S.M., Herbert, P.J. and Slattery, C.W. (1997) Structural studies on casein micelles of human milk: dissociation of β-casein of different phosphorylation levels induced by cooling and ethylenediaminetetraacetate. J. Dairy Sci., 80, 628–633.Google Scholar
  119. Sood, S.M., Herbert, P.J. and Slattery, C.W. (1998) The pH-dependent dissociation of δ-casein from human milk micelles: role of electrostatic interactions. J. Dairy Sci., 81, 3149–3153.Google Scholar
  120. Soulier, S., Sarfati, R.S. and Szabo, L. (1980) Structure of the asialyl oligosaccharide chains of kappa-casein isolated from ovine colostrum. Eur. J. Biochem., 108, 465–472.Google Scholar
  121. Soulier, S. and Gaye, P. (1981) Enzymatic O-glycosylation of κ-caseinomacropeptide by ovine mammary Golgi membranes. Biochimie, 63, 619–628.Google Scholar
  122. Stewart, A.F., Bonsing, J., Beattie, C.W., Shah, F., Willis, I.M. and Mackinlay, A.G. (1987) Complete nucleotide sequences of bovine δs2-and β-casein cDNAs: comparisons with related sequences in other species. Mol. Biol. Evol., 4, 231–241.Google Scholar
  123. Thépot, D., Devinoy, E., Fontaine, M.-L. and Houdebine, L.-M. (1991) Structure of the gene encoding rabbit β-casein. Gene, 97, 301–306.Google Scholar
  124. Threadgill, D.W. and Womack, J.E. (1990) Genomic analysis of the major bovine casein genes. Nucleic Acids Res., 18, 6935–6942.Google Scholar
  125. Valcarcel, J. and Green, M.R. (1996) The SR protein family: pleiotropic functions in pre-mRNA splicing. Trends Biochem. Sci., 21, 296–301.Google Scholar
  126. Valentine, C.R. (1998) The association of the nonsense codons with exon skipping. Mutation Res., 411, 87–117.Google Scholar
  127. van Halbeek, H., Vliegenthart, J.F.G., Fiat, A-M. and Joliés, P. (1985) Isolation and structural characterisation of the smaller-size oligosaccharide from desialylated human κ-casein. Establishment of a novel type of core for a mucin-type carbohydrate chain. FEBS Lett., 187, 81–88.Google Scholar
  128. Vogan, K.J., Underbill, D.A. and Gros, P. (1996) An alternative splicing event in the Pax-3 paired domain identifies the linker region as a key determinant of paired domain DNA-binding activity. Mol. Cell Biol., 12, 6677–6686.Google Scholar
  129. Walstra, P. (1990) On the stability of casein micelles. J. Dairy Sci., 73, 1965–1979.Google Scholar
  130. Wheeler, T.T., Kuys, Y.M., Broadhurst, M.M. and Molenaar, A.J. (1997) Mammary STAT5 abundance and activity are not altered with lactation state in cows. Mol. Cell. Endocrin., 133, 141–149.Google Scholar
  131. Winklehner-Jennewein, P., Geymayer, S., Lechner, J., Weite, T., Hanson, L., Geley, S. and Doppler, W. (1998) A distal enhancer region in the human β-casein gene mediates the response to prolactin and glucocorticoid hormones. Gene, 217, 127–139.Google Scholar
  132. Zahler, A.M., Neugebauer, K.M., Lane, W.S. and Roth, M.B. (1993) Distinct functions of SR proteins in alternative pre-mRNA splicing. Science, 260, 219–222.Google Scholar
  133. Zhang, J., Sun, X., Qian, Y., LaDuca, J.P. and Maquat, L.E. (1998a) At least one intron is required for the nonsense-mediated decay of triosephosphate isomerase mRNA: a possible link between nuclear splicing and cytoplasmic translation. Mol. Cell Biol., 18, 5272–5283.Google Scholar
  134. Zhang, J., Sun, X., Qian, Y., LaDuca, J.P. and Maquat, L.E. (1998b) Intron function in the nonsense-mediated decay of beta-globin mRNA: indications that pre-mRNA splicing in the nucleus can influence mRNA translation in the cytoplasm. RNA, 4, 801–815.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • P. Martin
  • P. Ferranti
  • C. Leroux
  • F. Addeo

There are no affiliations available

Personalised recommendations