Skip to main content

Interfacial, Emulsifying and Foaming Properties of Milk Proteins

  • Chapter
Advanced Dairy Chemistry—1 Proteins

Abstract

The emulsifying and foaming properties of milk proteins are amongst their most important functional properties (Morr, 1982; Mitchell, 1986; Doxastakis, 1989; Mulvihill and Fox, 1989; Phillips et ai., 1994; Damodaran, 1997) and the characteristics of most dairy products depend sensitively on how the milk protein fraction is organized at fat-serum and air-serum interfaces (Mulder and Walstra, 1974). Like all soluble food proteins, the caseins and the whey proteins exhibit high surface activity. The main thermodynamic driving force for protein adsorption at hydrophobic surfaces is the removal of non-polar side-chains from the unfavourable environment of the bulk aqueous phase (Dickinson et ai., 1988; Dickinson, 1989a; Dickinson and McClements, 1996). Both the caseins and the whey proteins have an especially strong tendency to adsorb at oil-water and air-water interfaces and to protect emulsions and foams against various physico-chemical mechanisms of instability. The relative effectiveness of different samples can vary substantially, however, depending on the exact protein composition, the molecular structures of the main individual protein monomers, the local solution environmental conditions, and the state of aggregation. In the case of milk proteins used as commercial ingredients, the state of aggregation is particularly strongly influenced by the prior processing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agboola, S.O. and Dalgleish, D.G. (1995) Calcium-induced destabilization of oil-in-water emulsions stabilized by caseinate or by β-lactoglobulin. J. Food Sci., 60, 399–404.

    CAS  Google Scholar 

  • Agboola, S.O. and Dalgleish, D.G. (1996a) Enzymatic hydrolysis of milk proteins used for emulsion formation. 1. Kinetics of protein breakdown and storage stability of the emulsions. J. Agric. Food Chem., 44, 3631–36.

    CAS  Google Scholar 

  • Agboola, S.O. and Dalgleish, D.G. (1996b) Enzymatic hydrolysis of milk proteins used for emulsion formation. 2. Effects of calcium, pH, and ethanol on the stability of the emulsions. J. Agric. Food Chem., 44, 3637–42.

    CAS  Google Scholar 

  • Agboola, S.O. and Dalgleish, D.G. (1996c) Effects of pH and ethanol on the kinetics of destabilization of oil-in-water emulsions containing milk proteins. J. Sci. Food Agric., 72, 448–54.

    CAS  Google Scholar 

  • Agboola, S.O. and Dalgleish, D.G. (1996d) Kinetics of the calcium-induced instability of oil-in-water emulsions: studies under shearing and quiescent conditions. Lebensm. Wiss. Technol., 29, 425–32.

    CAS  Google Scholar 

  • AguiĂ©-BĂ©ghin, V., Leclerc, E., Daoud, M. and Douillard, R. (1999) Asymmetric multiblock copolymers at the gas-liquid interface: phase diagram and surface pressure. J. Colloid Interface Sci., 214, 143–55.

    Google Scholar 

  • Alaimo, M.H., Wickham, E.D. and Farrell, H.M., Jr. (1999) Effect of self-association of αs1-casein and its cleavage fractions αs1-casein (136-196) and αs1-casein (1-197) on aromatic circular dichroic spectra: comparison with predicted models. Biochim. Biophys. Acta, 1431, 395–409.

    CAS  Google Scholar 

  • Anand, K. and Damodaran, S. (1996) Dynamics of exchange between αs1-casein and β-casein during adsorption at air-water interface. J. Agric. Food Chem., 44, 1022–8.

    CAS  Google Scholar 

  • Atkinson, P.J., Dickinson, E., Home, D.S. and Richardson, R.M. (1995) Neutron reflectivity of adsorbed β-casein and β-lactoglobulin at the air-water interface. J. Chem. Soc. Faraday Trans., 91, 2847–54.

    CAS  Google Scholar 

  • Atkinson, P.J., Dickinson, E., Hörne, D.S., Leermakers, F.A.M. and Richardson, R.M. (1996) Theoretical and experimental investigations of adsorbed protein structure at a fluid interface. Ber. Bunsen-Ges. Phys. Chem., 100, 994–8.

    CAS  Google Scholar 

  • Atkinson, P.J., Dickinson. E., Home, D.S., Leaver, J., Leermakers, F.A.M. and Richardson, R.M. (1997) β-Casein adsorbed layer structures predicted by self-consistent-field modelling: comparison with experiment. In Food Colloids: Proteins, Lipids and Polysaccharides, (E. Dickinson and B. BergenstĂ¥hl eds.) Royal Society of Chemistry, Cambridge, pp. 217–28.

    Google Scholar 

  • Ball, A. and Jones, R.A.L. (1995) Conformational changes in adsorbed proteins. Langmuir, 11, 3542–8.

    CAS  Google Scholar 

  • Barfod, N.M., Krog, N., Larsen, G. and Buchheim, W. (1991) Effects of emulsifiers on protein/fat interaction in ice-cream mix during ageing. 1. Quantitative analyses. Fat. Sci. Technol., 93, 24–9.

    CAS  Google Scholar 

  • Benjamins, J. and van Voorst Vader, F. (1992) The determination of the surface shear properties of adsorbed protein layers. Colloids Surf., 65, 161–74.

    CAS  Google Scholar 

  • Benjamins, J. and Lucassen-Reynders, E.H. (1998) Surface dilational rheology of proteins adsorbed at air-water and oil-water interfaces. In Proteins at Liquid Interfaces, (D. Möbius and R. Miller eds.) Elsevier, Amsterdam, pp. 341–84.

    Google Scholar 

  • BergenstĂ¥hl, B.A. and Claesson, P.M. (1990) Surface forces in emulsions. In Food Emulsions, 2nd edn, (K. Larsson and S.E. Friberg eds.) Marcel Dekker, New York, pp. 41–96.

    Google Scholar 

  • Berry, G.P. and Creamer, L.K. (1975) The association of bovine β-casein. Biochemistry, 14, 3542–5.

    CAS  Google Scholar 

  • Boerboom, F.J.G., de Groot-Mostert, A.E.A., Prins, A. and van Vliet, T. (1996) Bulk and surface rheological behaviour of aqueous milk protein solutions: a comparison. Neth. Milk Dairy J., 50, 183–98.

    Google Scholar 

  • Boode, K. and Walstra, P. (1993a) Partial coalescence in oil-in-water emulsions. 1. Nature of the aggregation. Colloids Surf. A, 81, 121–37.

    CAS  Google Scholar 

  • Boode, K. and Walstra. P. (1993b) Kinetics of partial coalescence in oil in-water emulsions. In Food Colloids and Polymers: Stability and Mechanical Properties, (E. Dickinson and P. Walstra eds.) Royal Society of Chemistry, Cambridge, pp. 23–30.

    Google Scholar 

  • Boode, K., Walstra, P. and de Groot-Mostert, A.E.A. (1993) Partial coalescence in oil-in-water emulsions 2. Influence of the properties of the fat. Colloids Surf. A, 81, 139–51.

    CAS  Google Scholar 

  • Bos, M., Nylander, T., Arnebrant, T. and Clark, D.C. (1997) Protein/emulsifier interactions. In Food Emulsifiers and their Applications, (L. Hasenhuettl and R.W. Hartel eds.) Chapman and Hall, New York, pp. 173–210.

    Google Scholar 

  • Britten, M., Bastrash, S., Fortin, J. and Fichtali, J. (1993) Emulsifying and foaming properties of sodium caseinate obtained from extrusion process. Milchwissenschaft, 48, 303–6.

    CAS  Google Scholar 

  • Brooksbank, D.V., Davidson, C.M., Home, D.S. and Leaver, J. (1993) Influence of electrostatic interactions on β-casein layers adsorbed on polystyrene latices. J. Chem. Soc. Faraday Trans., 89, 3419–25.

    CAS  Google Scholar 

  • Burgaud, I., Dickinson, E. and Nelson, P.V. (1990) An improved high-pressure homogenizer for making fine emulsions on a small scale. Int. J. Food Sci. Technol., 25, 39–46.

    Google Scholar 

  • Caessens, P.W.J.R., Gruppen, H., Visser, S., van Aken, G.A. and Voragen, A.G.J. (1997) Plasmin hydrolysis of β-casein: foam and emulsion properties of the fractionated hydrolysate. J. Agric. Food Chem., 45, 2935–41.

    CAS  Google Scholar 

  • Caessens, P.W.J.R., de Jongh, H.H.J., Norde. W. and Gruppen, H. (1999a) The adsorption-induced secondary structure of β-casein and of distinct parts of its sequence in relation to foam and emulsion properties. Biochim. Biophys. Acta, 1430, 73–83.

    CAS  Google Scholar 

  • Caessens, P.W.J.R., Gruppen, H., Slangen, C.J., Visser, S. and Voragen, A.G.J. (1999b) Functionality of β-casein peptides: importance of amphipathicity for emulsion stabilizing properties. J. Agric. Food Chem., 47, 1856–62.

    CAS  Google Scholar 

  • Caessens, P.W.J.R., Visser, S., Gruppen, H., van Aken, G.A. and Voragen, A.G.J. (1999c) Emulsion and foam properties of plasmin derived β-casein peptides. Int. Dairy J., 9, 347–51.

    CAS  Google Scholar 

  • Campbell, I., Norton, I. and Morley, W. (1996) Factors controlling the phase inversion of oil-in-water emulsions. Neth. Milk Dairy J., 50, 167–82.

    CAS  Google Scholar 

  • Cao, Y. and Damodaran, S. (1995) Co-adsorption of β-casein and bovine serum albumin at the air/water interface from a binary mixture. J. Agric. Food Chem., 43, 2567–73.

    CAS  Google Scholar 

  • Cao, Y., Dickinson, E. and Wedlock, D.J. (1991) Influence of polysaccharides on the creaming of casein-stabilized emulsions. Food Hydrocoll., 5, 443–54.

    CAS  Google Scholar 

  • Casanova, H. and Dickinson, E. (1998a) Influence f protein interfacial composition on salt stability of mixed casein emulsions. J. Agric. Food Chem., 46, 72–6.

    CAS  Google Scholar 

  • Casanova, H. and Dickinson, E. (1998b) Rheology and flocculation of oil-in-water emulsions made with mixtures of αs1-casein + β-casein. J. Colloid Interface Sci., 206, 82–9.

    Google Scholar 

  • Castle, J., Dickinson, E., Murray, B.S. and Stainsby, G. (1987) Mixed protein films adsorbed at the oil-water interface. ACS Symp. Ser., 343, 118–34.

    CAS  Google Scholar 

  • Cayot, P., Courthaudon, J.-L. and Lorient, D. (1991) Emulsifying properties of pure and mixed αs1-casein and β-casein fractions—effects of chemical glycosylation. J. Agric Food Chem., 39, 1369–73.

    CAS  Google Scholar 

  • Chanyongvorakul, Y., Matsumura, Y., Sawa, A., Nio, N. and Mori, T. (1997) Polymerization of β-lactoglobulin and bovine serum albumin at oil-water interfaces in emulsions by transglutaminase. Food Hydrocoli., 11, 449–55.

    CAS  Google Scholar 

  • Chen, J. and Dickinson, E. (1993) Time-dependent competitive adsorption of milk proteins and surfactants in oil-in-water emulsions. J. Sci. Food Agric, 62, 283–9.

    CAS  Google Scholar 

  • Chen, J. and Dickinson E. (1995a) Surface shear viscosity and protein-surfactant interactions in mixed protein films adsorbed at the oil-water interface. Food Hydrocoli., 9, 35–42.

    CAS  Google Scholar 

  • Chen, J. and Dickinson E. (1995b) Protein/surfactant interfacial interactions. 1. Flocculation of emulsions containing mixed protein + surfactant. Colloids Surf. A, 100, 255–65.

    CAS  Google Scholar 

  • Chen, J. and Dickinson E. (1995c) Protein/surfactant interfacial interactions. 3. Competitive adsorption of protein + surfactant in emulsions. Colloids Surf. A, 101, 77–85.

    CAS  Google Scholar 

  • Chen, J. and Dickinson E. (1998a) Viscoelastic properties of protein-stabilized emulsions: effect of protein-surfactant interactions. J. Agric. Food Chem., 46, 91–7.

    CAS  Google Scholar 

  • Chen, J. and Dickinson E. (1998b) Protein/emulsifier interactions and the viscoelasticity of whey protein emulsion gels. In Emulsifiers: Functionality and Applications, (K. Berger and R.J. Hamilton eds.) Society of the Chemical Industry, London, pp. 19–24.

    Google Scholar 

  • Chen, J. and Dickinson E. (1999a) Effect of surface character of filler particles on rheology of heat-set whey protein emulsion gels. Colloids Surf. B, 12, 373–81.

    CAS  Google Scholar 

  • Chen, J. and Dickinson E. (1999b) Effect of monoglycerides and diglycerol esters on viscoelasticity of heat-set whey protein emulsion gels. Int. J. Food Sci. Technol., 34, 493–501.

    CAS  Google Scholar 

  • Chen, J., Dickinson, E. and Iveson, G. (1993) Interfacial interactions, competitive adsorption and emulsion stability. Food Struct., 12, 135–46.

    CAS  Google Scholar 

  • Clark, D.C. (1995) Application of state-of-the-art fluorescence and interferometric techniques to study coalescence in food dispersions. In Characterization of Food: Emerging Methods, (A. Gaonkar ed.) Elsevier, Amsterdam, pp. 23–57.

    Google Scholar 

  • Clark, D.C., Coke, M., Mackie, A.R., Finder, A.C. and Wilson, D.R. (1990) Molecular diffusion and thickness measurements of protein-stabilized thin liquid films. J. Colloid Interface Sci., 138, 207–18.

    CAS  Google Scholar 

  • Clark, D.C., Coke, M., Wilde, P.J. and Wilson, D.R. (1991) Molecular diffusion at interfaces and its relation to disperse phase stability. In Food Polymers, Gels and Colloids, (E. Dickinson ed.) Royal Society of Chemistry, London, pp. 272–8.

    Google Scholar 

  • Clark, D.C., Wilde, P.J., Bergink-Martens, J.M., Kokelaar, A.J.J. and Prins, A. (1993) Surface dilational behaviour of a mixture of aqueous β-lactoglobulin and Tween 20 solutions. In Food Colloids and Polymers: Stability and Mechanical Properties, (E. Dickinson and P. Walstra eds.) Royal Society of Chemistry, Cambridge, pp. 354–64.

    Google Scholar 

  • Coke, M., Wilde, P.J., Russell, E.J. and Clark, D.C. (1990) The influence of surface composition and molecular diffusion on the stability of foams formed from protein/detergent mixtures. J. Colloid Interface Sci., 138, 489–504.

    CAS  Google Scholar 

  • Cornee, M., Mackie, A.R., Wilde, P.J. and Clark, D.C. (1996) Competitive adsorption of β-lactoglobulin and β-casein with Span 80 at the oil-water interface and the effects on emulsion behaviour. Colloids Surf. A, 114, 237–44.

    Google Scholar 

  • Corredig, M. and Dalgleish, D.G. (1995) A differential microcalorimetric study of whey proteins and their behaviour in oil-in-water emulsions. Colloids Surf. B, 4, 411–22.

    CAS  Google Scholar 

  • Corredig, M. and Dalgleish, D.G. (1997) Studies on the susceptibility of membrane-derived proteins to proteolysis as related to changes in their emulsifying properties. Food Res. Int., 30, 689–97.

    CAS  Google Scholar 

  • Courthaudon, J.-L., Dickinson. E., Matsumura, Y. and Clark, B.C. (1991a) Competitive adsorption of β-lactoglobulin + Tween 20 at the oil-water interface. Colloids Surf., 56, 293–300.

    CAS  Google Scholar 

  • Courthaudon. J.-L., Dickinson, E. and Dalgleish, D.G. (1991b) Competitive adsorption of β-casein and non-ionic surfactants in oil-in-water emulsions. J. Colloid Interface Sci., 145, 390–5.

    CAS  Google Scholar 

  • Courthaudon, J.-L., Dickinson, E., Matsumura, Y. and Williams, A. (1991c) Influence of emulsifiers on the competitive adsorption of whey proteins in emulsions. Food Struct., 10, 109–15.

    CAS  Google Scholar 

  • Courthaudon, J.-L., Dickinson, E. and Christie, W.W. (1991d) Competitive adsorption of lecithin and β-casein in oil-in-water emulsions. J. Agric. Food Chem., 39, 1365–8.

    CAS  Google Scholar 

  • Courthaudon. J.-L., Girardet, J.-M., Campagne, S., Rouhier, L.-M., Campagna, S., Linden, G. and Lorient, D. (1999) Surface-active and emulsifying properties of casein micelles compared to those of sodium caseinate. Int. Dairy J., 9, 411–2.

    CAS  Google Scholar 

  • Creamer, L.K. and Berry, G.P. (1975) A study of the properties of dissociated bovine casein micelles. J. Dairy Res., 42, 169–83.

    CAS  Google Scholar 

  • Dalgleish, D.G. (1990) The conformations of proteins on solid/water interfaces: caseins and phosvitin on polystyrene latices. Colloids Surf., 46, 141–55.

    CAS  Google Scholar 

  • Dalgleish, D.G. (1993) The sizes and conformations of the proteins in adsorbed layers of individual caseins on latices and in oil-in-water emulsions. Colloids Surf. B, 1, 1–8.

    CAS  Google Scholar 

  • Dalgleish, D.G. (1996) Conformations and structures of milk proteins adsorbed to oil-water interfaces. Food Res. Int., 29, 541–7.

    CAS  Google Scholar 

  • Dalgleish, D.G. (1997) Adsorption of protein and the stability of emulsions. Trends Food Sci. Technol., 8, 1–6.

    CAS  Google Scholar 

  • Dalgleish, D.G. (1998) Casein micelles as colloids: surface structures and stabilities. J. Dairy Sci., 81, 3013–8.

    CAS  Google Scholar 

  • Dalgleish, D.G. (1999) Interfacial structures and colloidal interactions in protein-stabilized emulsions. In Food Emulsions and Foams: Interfaces, Interaction and Stability, (E. Dickinson and J.M. Rodriguez Patino eds.) Royal Society of Chemistry, Cambridge, pp. 1–16.

    Google Scholar 

  • Dalgleish, D.G. and Leaver, J. (1991) The possible conformations of milk proteins adsorbed on oil/water interfaces. J. Colloid Interface Sci., 141, 288–94.

    CAS  Google Scholar 

  • Dalgleish, D.G., Dickinson, E. and Whyman, R.H. (1985) Ionic strength effects on the electrophoretic mobility of casein-coated polystyrene latex particles. J. Colloid Interface Sci., 108, 174–9.

    CAS  Google Scholar 

  • Dalgleish, D.G., Srinivasan, M. and Singh, H. (1995) Surface properties of oil-in-water emulsion droplets containing casein and Tween 60. J. Agric Food Chem., 43, 2351–5.

    CAS  Google Scholar 

  • Dalgleish, D.G., Tosh, S.M. and West, S.J. (1996) Beyond homogenization: the formation of very small emulsion droplets during the processing of milk by a Microfluidizer. Neth. Milk Dairy J., 50, 135–18.

    Google Scholar 

  • Dalgleish, D.G., West, S.J. and Hallett, F.R. (1997) The characterization of small emulsion droplets made from milk proteins and triglyceride oil. Colloids Surf. A, 123, 145–53.

    Google Scholar 

  • Damodaran, S. (1997) Protein-stabilized foams and emulsions. In Food Proteins and their Applications, (S. Damodaran and A. Paraf eds.) Marcel Dekker, New York, pp. 57–110.

    Google Scholar 

  • Damodaran, S. and Anand, K. (1997) Sulfhydryl-disulfide interchange-induced interparticle protein polymerization in whey protein-stabilized emulsions and its relation to emulsion stability. J. Agric Food Chem., 45, 3813–20.

    CAS  Google Scholar 

  • Das, K.P. and Kinsella, J.E. (1990) Effect of heat denaturation on the adsorption of β-lactoglobulin at the oil-water interface and on coalescence stability of emulsions. J. Colloid Interface Sci., 139, 551–60.

    CAS  Google Scholar 

  • de Feijter, J.A. and Benjamins, J. (1982) Soft-particle model of compact macromolecules at interfaces. J. Colloid Interface Sci., 90, 289–92.

    Google Scholar 

  • de Feijter, J.A., Benjamins. J. and Tamboer, M. (1987) Adsorption displacement of proteins by surfactants in oil-in-water emulsions. Colloids Surf., 27, 243–66.

    Google Scholar 

  • Demetriades, K. and McClements, D.J. (2000) Influence of sodium dodecyl sulfate on the physicochemical properties of whey protein-stabilized emulsions. Colloids Surf. A, 161, 391–400.

    CAS  Google Scholar 

  • Dickinson, E. (1988) The structure and stability of emulsions. In Food Structure—Its Creation and Evaluation, (J.M.V. Blanshard and J.R. Mitchell eds.) Butterworths, London, pp. 41–57.

    Google Scholar 

  • Dickinson, E. (1989a) Protein adsorption at liquid interfaces and the relationship to foam stability. In Foams: Physics, Chemistry and Structure, (A.J. Wilson ed.) Springer-Verlag, Berlin, pp. 39–53.

    Google Scholar 

  • Dickinson, E. (1989b) Surface and emulsifying properties of caseins. J. Dairy Res., 56, 471–7.

    Google Scholar 

  • Dickinson, E. (1992a) An Introduction to Food Colloids, Oxford University Press, Oxford.

    Google Scholar 

  • Dickinson, E. (1992b) Structure and composition of adsorbed protein layers and the relationship to emulsion stability. J. Chem. Soc. Faraday Trans., 88, 2973–83.

    CAS  Google Scholar 

  • Dickinson, E. (1993a) Emulsion stability. In Food Hydrocolloids: Structures, Properties and Functions, (K. Nishinari and E. Doi eds.) Plenum, New York, pp. 387–98.

    Google Scholar 

  • Dickinson, E. (1993b) Proteins in solution and at interfaces. In Interactions of Surfactants with Polymers and Proteins, (E.D. Goddard and K.P. Ananthapadma-nabhan eds.) CRC Press, Boca Raton, FL, pp. 295–317.

    Google Scholar 

  • Dickinson, E. (1995) Recent trends in food colloids research In Food Macromolecules and Colloids, (E. Dickinson and D. Lorient eds.) Royal Society of Chemistry, Cambridge, pp. 1–19.

    Google Scholar 

  • Dickinson, E. (1997a) Properties of emulsions stabilized with milk proteins. J. Dairy Sci., 80, 2607–19.

    CAS  Google Scholar 

  • Dickinson, E. (1997b) Enzymic crosslinking as a tool for food colloid rheology control and interfacial stabilization. Trends Food Sci. Technol., 8, 334–9.

    CAS  Google Scholar 

  • Dickinson, E. (1997c) Aggregation processes, particle interactions and colloidal structure. In Food Colloids: Proteins, Lipids and Polysaccharides, (E. Dickinson and B. BergenstĂ¥hl eds.) Royal Society of Chemistry, Cambridge, pp. 107–26.

    Google Scholar 

  • Dickinson, E. (1998a) Proteins at interfaces and in emulsions: stability, rheology and interactions. J. Chem. Soc. Faraday Trans., 94, 1657–69.

    CAS  Google Scholar 

  • Dickinson, E. (1998b) Rheology of emulsions—the relationship to structure and stability. In Modern Aspects of Emulsion Science, (B.P. Binks ed.) Royal Society of Chemistry, Cambridge, pp. 145–74.

    Google Scholar 

  • Dickinson, E. (1999a) Caseins in emulsions: interfacial properties and interactions. Int. Dairy J., 9, 305–12.

    CAS  Google Scholar 

  • Dickinson, E. (1999b) Adsorbed protein layers at fluid interfaces: interactions, structure and surface rheology. Colloids Surf. B, 15, 161–76.

    CAS  Google Scholar 

  • Dickinson, E. (1999c) Enzymatic crosslinking of milk proteins. Proceedings of 25th International Dairy Congress (Aarhus), 2, 209–15.

    Google Scholar 

  • Dickinson, E. and Casanova, H. (1999) A thermoreversible emulsion gel based on sodium caseinate. Food Hydrocoll., 13, 285–9.

    CAS  Google Scholar 

  • Dickinson, E. and Chen, J. (1999) Heat-set whey protein emulsion gels: role of active and inactive filler particles. J. Dispersion Sci. Technol., 20, 197–213.

    CAS  Google Scholar 

  • Dickinson, E. and Davies, E. (1999) Influence of ionic calcium on stability of sodium caseinate emulsions. Colloids Surf. B, 12, 203–12.

    CAS  Google Scholar 

  • Dickinson, E. and Euston, S.R. (1991) Stability of food emulsions containing both protein and polysaccharide. In Food Polymers, Gels and Colloids, (E. Dickinson ed.) Royal Society of Chemistry, Cambridge, pp. 132–46.

    Google Scholar 

  • Dickinson, E. and Galazka, V.B. (1991a) Emulsion stabilization by ionic and covalent complexes of β-lactoglobulin with polysaccharides. Food Hydrocoli., 5, 281–96.

    CAS  Google Scholar 

  • Dickinson, E. and Galazka, V.B. (1991b) Bridging flocculation induced by competitive adsorption: implications for emulsion stability. J. Chem. Soc. Faraday Trans., 87, 963–9.

    CAS  Google Scholar 

  • Dickinson, E. and Galazka, V.B. (1992) Emulsion stabilization by protein-polysaccharide complexes. In Gums and Stabilisers for the Food Industry, Vol. 6, (G.O. Phillips, D.J. Wedlock and P.A. Williams eds.) IRL Press, Oxford, pp. 351–62.

    Google Scholar 

  • Dickinson, E. and Gelin, J.-L. (1992) Influence of emulsifier on competitive adsorption of αs-casein and β-lactoglobulin in oil-in-water emulsions. Colloids Surf., 63, 329–35.

    CAS  Google Scholar 

  • Dickinson, E. and Golding, M. (1997a) Depletion flocculation of emulsions containing unadsorbed sodium caseinate. Food Hydrocoli., 11, 13–8.

    CAS  Google Scholar 

  • Dickinson, E. and Golding, M. (1997b) Rheology of sodium caseinate stabilized oil-in-water emulsions. J. Colloid Interface Sci., 191, 166–76.

    CAS  Google Scholar 

  • Dickinson, E. and Golding, M. (1998a) Influence of alcohol on stability of oil-in-water emulsions containing sodium caseinate. J. Colloid Interface Sci., 197, 133–41.

    CAS  Google Scholar 

  • Dickinson, E. and Golding, M. (1998b) Influence of calcium ions on creaming and rheology of emulsions containing sodium caseinate. Colloids Surf. A, 144, 167–77.

    CAS  Google Scholar 

  • Dickinson, E. and Hong, S.-T. (1994) Surface coverage of β-lactoglobulin at the oil-water interface: influence of protein heat treatment and various emulsifiers. J. Agric. Food Chem., 42, 1602–6.

    CAS  Google Scholar 

  • Dickinson, E. and Hong, S.-T. (1995) Influence of water-soluble nonionic emulsifier on the rheology of heat-set protein-stabilized emulsion gels. J. Agric. Food Chem., 43, 2560–6.

    CAS  Google Scholar 

  • Dickinson, E. and Hong, S.-T. (1996) Rheology of heat-set protein-stabilized emulsion gels: influence of emulsifier-protein interactions. In Gums and Stabilisers for the Food Industry, Vol. 8, (G.O. Phillips, D.J. Wedlock and P.A. Williams eds.) Oxford University Press, Oxford, pp. 319–28.

    Google Scholar 

  • Dickinson, E. and Hong, S.-T. (1997) Influence of an anionic surfactant on the rheology of heat-set β-lactoglobulin-stabilized emulsion gels. Colloids Surf. A, 127, 1–10.

    CAS  Google Scholar 

  • Dickinson, E. and Iveson, G. (1993) Adsorbed films of β-lactoglobulin + lecithin at the hydrocarbon-water and triglyceride-water interfaces. Food Hydrocoll., 6, 533–41.

    CAS  Google Scholar 

  • Dickinson, E. and Izgi, E. (1996) Foam stabilization by protein-polysaccharide complexes. Colloids Surf., 113, 191–201.

    CAS  Google Scholar 

  • Dickinson, E. and James, J.D. (1998) Rheology and flocculation of high-pressure-treated β-lactoglobulin-stabilized emulsions. J. Agric. Food Chem., 46, 2565–71.

    CAS  Google Scholar 

  • Dickinson, E. and Matsumura, Y. (1991) Time-dependent polymerization of β-lactoglobulin through disulfide bonds at the oil-water interface in emulsions. Int. J. Biol. Macromol., 13, 26–30.

    CAS  Google Scholar 

  • Dickinson, E. and Matsumura, Y. (1994) Proteins at liquid interfaces: role of the molten globule state. Colloids Surf. B, 3, 1–17.

    CAS  Google Scholar 

  • Dickinson, E. and McClements, D.J. (1996) Advances in Food Colloids, Blackie, Glasgow.

    Google Scholar 

  • Dickinson, E. and Pawlowsky, K. (1997) Effect of i-carrageenan on flocculation, creaming and rheology of a protein-stabilized emulsion. J. Agric. Food Chem., 45, 3799–806.

    CAS  Google Scholar 

  • Dickinson, E. and Stainsby, G. (1982) Colloids in Foods, Applied Science Publishers, London.

    Google Scholar 

  • Dickinson, E. and Tanai, S. (1992a) Protein displacement from the emulsion droplet surface by oil-soluble and water-soluble surfactants. J. Agric. Food Chem., 40, 179–83.

    CAS  Google Scholar 

  • Dickinson, E. and Tanai, S. (1992b) Temperature dependence of the competitive displacement of protein from the emulsion droplet surface by surfactants. Food Hydrocoll., 6, 163–71.

    CAS  Google Scholar 

  • Dickinson, E. and Williams, A. (1994) Orthokinetic coalescence of protein-stabilized emulsions. Colloids Surf. A, 88, 481–97.

    Google Scholar 

  • Dickinson, E. and Woskett, C.M. (1989) Competitive adsorption between proteins and small-molecule surfactants in food emulsions. In Food Colloids, (R.D. Bee, P. Richmond and J. Mingins eds.) Royal Society of Chemistry, London, pp. 74–96.

    Google Scholar 

  • Dickinson, E. and Yamamoto, Y. (1996a) Effect of lecithin on the viscoelastic properties of β-lactoglobulin-stabilized emulsion gels. Food Hydrocoll., 10, 301–7.

    CAS  Google Scholar 

  • Dickinson, E. and Yamamoto, Y. (1996b) Viscoelastic properties of heat-set whey protein-stabilized emulsion gels with added lecithin. J. Food Sci., 61, 811–6.

    CAS  Google Scholar 

  • Dickinson, E. and Yamamoto, Y. (1996c) Rheology of milk protein gels and protein-stabilized emulsion gels cross-linked with transglutaminase. J. Agri. Food Chem., 44, 1371–7.

    CAS  Google Scholar 

  • Dickinson, E., Flint, F.O. and Hunt, J.A. (1989) Bridging flocculation in binary protein-stabilized emulsions. Food Hydrocoll., 3, 389–97.

    CAS  Google Scholar 

  • Dickinson, E., Golding, M. and Casanova, H. (1999c) Creaming, flocculation and rheology of casein-stabilized emulsions. In Food Emulsions and Foams: Interfaces, Interactions and Stability, (E. Dickinson and J.M. Rodriguez Patino eds.) Royal Society of Chemistry, Cambridge, pp. 327–41.

    Google Scholar 

  • Dickinson, E., Golding, M. and Povey, M.J.W. (1997c) Creaming and flocculation of oil-in-water emulsions containing sodium caseinate. J. Colloid Interface Sci., 185, 515–29.

    CAS  Google Scholar 

  • Dickinson, E., Hong, S.-T. and Yamamoto, Y. (1996) Rheology of heat-set emulsion gels containing β-lactoglobulin and small-molecule surfactants. Neth. Milk Dairy J., 50, 199–207.

    CAS  Google Scholar 

  • Dickinson, E., Home, D.S., Phipps, J.S. and Richardson, R.M. (1993a) A neutron reflectivity study of the adsorption of β-casein at fluid interfaces. Langmuir, 9, 242–8.

    CAS  Google Scholar 

  • Dickinson, E., Home, D.S., Pinfield, V.J. and Leermakers, F.A.M. (1997a) Self-consistent-field modelling of casein adsorption: comparison of results for αs1-casein and β-casein. J. Chem. Soc. Faraday Trans., 93, 425–32.

    CAS  Google Scholar 

  • Dickinson, E., Home, D.S. and Richardson, R.M. (1993b) Neutron reflectivity study of the competitive adsorption of β-casein and water-soluble surfactant at the planar air-water interface. Food Hydrocoli., 7, 497–505.

    CAS  Google Scholar 

  • Dickinson, E., Mauffret. A., Rolfe, S.E. and Woskett, C.M. (1989) Adsorption at interfaces in dairy systems. J. Soc. Dairy Technol., 42, 18–22.

    Google Scholar 

  • Dickinson, E., Murray, B.S. and Stainsby, G. (1985) Time-dependent surface viscosity of adsorbed films of casein + gelatin at the oil-water interface. J. Colloid Interface Sci., 106, 259–62.

    CAS  Google Scholar 

  • Dickinson, E., Murray, B.S. and Stainsby, G. (1988) Protein adsorption at air-water and oil-water interfaces. In Advances in Food Emulsions and Foams, (E. Dickinson and G. Stainsby eds.) Elsevier Applied Science, London, pp. 123–62.

    Google Scholar 

  • Dickinson, E., Owusu. R.K., Tan, S. and Williams, A. (1993c) Oil-soluble surfactants have little effect on competitive adsorption of α-lactalbumin and β-lactoglobulin in emulsions. J. Food Sci., 58, 295–8.

    CAS  Google Scholar 

  • Dickinson, E., Pinfield, V.J., Home, D.S. and Leermakers, F.A.M. (1997b) Self-consistent-field modelling of adsorbed casein: interaction between two protein-coated surfaces. J. Chem. Soc. Faraday Trans., 93, 1785–90.

    CAS  Google Scholar 

  • Dickinson, E., Ritzoulis, C. and Povey, M.J.W. (1999a) Stability of emulsions containing both sodium casemate and Tween 20. J. Colloid Interface Sci., 212, 466–73.

    CAS  Google Scholar 

  • Dickinson, E., Ritzoulis, C., Yamamoto, Y. and Logan, H. (1999b) Ostwald ripening of protein-stabilized emulsions: effect of transglutaminase crosslinking. Colloids Surf. B, 12, 139–46.

    CAS  Google Scholar 

  • Dickinson, E., Rolfe, S.E. and Dalgleish, D.G. (1988) Competitive adsorption of αs1-casein and β-casein in oil-in-water emulsions. Food Hydrocoli., 2, 397–405.

    CAS  Google Scholar 

  • Dickinson, E., Rolfe, S.E. and Dalgleish, D.G. (1989) Competitive adsorption in oil-in-water emulsions containing α-lactalbumin and β-lactoglobulin. Food Hydrocoli., 3, 193–203.

    CAS  Google Scholar 

  • Dickinson, E., Rolfe, S.E. and Dalgleish, D.G. (1990) Surface shear viscometry as a probe of protein-protein interactions in mixed protein films adsorbed at the oil-water interface. Int. J. Biol. Macromol., 12, 189–94.

    CAS  Google Scholar 

  • Dickinson, E., Semenova, M.G. and Antipova, A.S. (1998a) Salt stability of casein emulsions. Food Hydrocoli., 12, 227–35.

    CAS  Google Scholar 

  • Dickinson, E., Semenova, M.G., Antipova, A.S. and Pelan E.G. (1998b) Effect of high-methoxy pectin on properties of casein-stabilized emulsions. Food Hydrocoll., 12, 425–32.

    CAS  Google Scholar 

  • Dickinson, E., Whyman, R.H. and Dalgleish, D.G. (1987) Colloidal properties of model oil-in-water food emulsions stabilized separately by αs1-casein, β-casein and K-casein. In Food Emulsions and Foams, (E. Dickinson ed.) Royal Society of Chemistry, London, pp. 40–51.

    Google Scholar 

  • Dimitrova, T.D. and Leal-Calderon, F. (1999) Forces between emulsion droplets stabilized with Tween 20 and proteins. Langmuir, 15, 8813–21.

    CAS  Google Scholar 

  • Doxastakis, G. (1989) Milk proteins. In Food Emulsifiers, (G. Charalambous and G. Doxastakis eds.) Elsevier, Amsterdam, pp. 9–62.

    Google Scholar 

  • Euston, S.R. (1997) Emulsifiers in dairy products and dairy substitutes. In Food Emulsifiers and their Applications, (L. Hasenhuett and R.W. Hartel eds.) Chapman and Hall, New York, pp. 173–210.

    Google Scholar 

  • Euston, S.E., Singh, H., Munro, P.A. and Dalgleish, D.G. (1995) Competitive adsorption between sodium caseinate and oil-soluble and water-soluble surfactants in oil-in-water emulsions. J. Food Sci., 60, 1124–31.

    CAS  Google Scholar 

  • Euston, S.E., Singh, H., Munro, P.A. and Dalgleish, D.G. (1996) Oil-in-water emulsions stabilized by sodium caseinate or whey protein isolate as influenced by glycerol monostearate. J. Food Sci., 61, 916–20.

    CAS  Google Scholar 

  • Færgemand, M., Murray, B.S. and Dickinson, E. (1997) Crosslinking of milk proteins with transglutaminase at the oil-water interface. J. Agric. Food Chem., 45, 2514–9.

    Google Scholar 

  • Faergemand, M., Murray, B.S., Dickinson, E. and Qvist, K.B. (1999) Cross-linking of adsorbed casein films with transglutaminase. Int. Dairy J., 9, 305–12.

    Google Scholar 

  • Faergemand, M., Otte, J. and Qvist, K.B. (1998) Emulsifying properties of milk proteins crosslinked with microbial transglutaminase. Int. Dairy J., 8, 715–23.

    CAS  Google Scholar 

  • Fang, Y. and Dalgleish, D.G. (1996a) Competitive adsorption between dioleoyl-phosphatidylcholine and sodium caseinate on oil-water interfaces. J. Agric. Food Chem., 44, 59–64.

    CAS  Google Scholar 

  • Fang Y. and Dalgleish D.G. (1996b) Comparison of the effects of three different phosphatidylcholines on casein-stabilized oil-in-water emulsions. J. Am. Oil Chem. Soc., 73, 437–42.

    CAS  Google Scholar 

  • Fang, Y. and Dalgleish, D.G. (1997) Conformation of β-lactoglobulin studied by FTIR: effect of pH, temperature, and adsorption to the oil-water interface. J. Colloid Interface Sci., 196, 292–8.

    CAS  Google Scholar 

  • Farrer, D. and Lips, A. (1999) On the self-assembly of sodium caseinate. Int. Dairy J., 9, 281–6.

    CAS  Google Scholar 

  • Fillery-Travis, A.J., Gunning, P.A., Hibberd, D.J. and Robins, M.M. (1993) Coexistent phases in concentrated polydisperse emulsions flocculated by non-adsorbing polymer. J. Colloid Interface Sci., 159, 189–97.

    CAS  Google Scholar 

  • Fragneto, G., Thomas, R.K., Rennie, A.R. and Penfold, J. (1995) Neutron reflection study of bovine β-casein adsorbed on OTS self-assembled monolayers. Science, 267, 657–60.

    CAS  Google Scholar 

  • Galazka, V.B. and Dickinson, E. (1995) Surface properties of protein layers adsorbed from mixtures of gelatin with various caseins. J. Texture Stud., 26, 401–9.

    Google Scholar 

  • Galazka, V.B., Dickinson, E. and Ledward, D.A. (1996) Effect of high pressure on the emulsifying behaviour of β-lactoglobulin. Food Hydrocoll., 10, 213–9.

    CAS  Google Scholar 

  • Galazka, V.B., Ledward, D.A., Dickinson, E. and Langley, K.R. (1995) High pressure effects on the emulsifying behaviour of whey protein concentrate. J. Food Sci., 60, 1341–3.

    CAS  Google Scholar 

  • Gelin, J.-L., Poyen, L., Courthaudon, J.-L., Le Meste, M. and Lorient, D. (1994) Structural changes in oil-in-water emulsions during the manufacture of ice-cream. Food Hydrocoll., 8, 299–308.

    CAS  Google Scholar 

  • Goff, H.D. (1997a) Instability and partial coalescence in whippable dairy emulsions. J. Dairy Sci., 80, 2620–30.

    CAS  Google Scholar 

  • Goff, H.D. (1997b) Colloidal aspects of ice-cream—a review. Int. Dairy J., 7, 363–73.

    CAS  Google Scholar 

  • Goff, H.D. and Jordan, W.K. (1989) Action of emulsifiers in promoting fat destabilization during the manufacture of ice-cream. J. Dairy Sci., 72, 18–29.

    CAS  Google Scholar 

  • Gouldby, S.J., Gunning, P.A., Hibberd, D.J. and Robins. M.M. (1991) Creaming in flocculated oil-in-water emulsions. In Food Polymers, Gels and Colloids, (E. Dickinson ed.) Royal Society of Chemistry, Cambridge, pp. 244–61.

    Google Scholar 

  • Graham, D.E. and Phillips, M.C. (1979) Proteins at liquid interfaces. J. Colloid Interface Sci., 70, 415–26.

    CAS  Google Scholar 

  • Guo, M.R., Fox, P.P., Flynn, A. and Kindstedt, P.S. (1996) Heat-induced modifications of the functional properties of sodium caseinate. Int. Dairy J., 6, 473–83.

    CAS  Google Scholar 

  • HaertlĂ©, T. and Chobert, J.-M. (1999) Recent progress in processing of dairy proteins: a review. J. Food Biochem., 23, 367–407.

    Google Scholar 

  • Haque, Z. and Kinsella, J.E. (1989a) Emulsifying properties of food proteins— development of a standard emulsification method. J. Food Sci., 54, 39–44.

    CAS  Google Scholar 

  • Haque, Z. and Kinsella, J.E. (1989b) Relative emulsifying activity of bovine serum albumin and casein as assessed by three different methods. J. Food Sci., 54, 1341–4.

    CAS  Google Scholar 

  • Haque, Z., Leman, J. and Kinsella, J.E. (1988) Emulsifying properties of food proteins—bovine micellar casein. J. Food Sci., 53, 1107–10.

    CAS  Google Scholar 

  • Heertje, I., Nederlof, J., Hendrickx, A.C.M. and Lucassen-Reynders, E.H. (1990) The observation of the displacement of emulsifiers by confocal scanning laser microscopy. Food Struct., 9, 305–16.

    Google Scholar 

  • Heertje, I., van Aalst, H., Blonk, J.C.G., Don, A., Nederlof, J. and Lucassen-Reynders, E.H. (1996) Observations on emulsifiers at the interface between oil and water by confocal scanning light microscopy. Lebensm. Wiss. Technol., 29, 217–26.

    CAS  Google Scholar 

  • Hemar, Y. and Home. D.S. (1999) Rheology of highly concentrated protein-stabilized emulsions. In Food Emulsions and Foams: Interfaces, Interactions and Stability, (E. Dickinson and J.M. Rodriguez Patino eds.) Royal Society of Chemistry, Cambridge, pp. 318–26.

    Google Scholar 

  • Hill, S.E. (1996) Emulsions. In Methods of Testing Protein Functionality, (G.M. Hall ed.) Chapman & Hall, London, pp. 153–85.

    Google Scholar 

  • Holt, S.A. and White. J.W. (1999) The molecular structure of the surface of commercial cow’s milk. Phys. Chem. Chem. Phys., 1, 5139–45.

    CAS  Google Scholar 

  • Home, D.S. (1998) Casein interactions: casting light on the black boxes, the structure in dairy products. Int. Dairy J., 8, 171–7.

    Google Scholar 

  • Home, D.S. and Leaver. J. (1995) Milk proteins on surfaces. Food Hydrocoll., 9, 91–5.

    Google Scholar 

  • Home, D.S., Atkinson, P.J., Dickinson, E., Pinfield, V.J. and Richardson, R.M. (1998) Neutron reflectivity study of competitive adsorption of β-lactoglobulin and nonionic surfactant at the air-water interface. Int. Dairy J., 8, 73–7.

    Google Scholar 

  • Howe, A.M., Mackie, A.R. and Robins, M.M. (1986) Technique to measure emulsion creaming by velocity of ultrasound. J. Dispersion Sci. Technol., 7, 231–43.

    CAS  Google Scholar 

  • Huang, X.L.L., Catignani, G.L. and Swaisgood, H.E. (1996) Improved emulsifying properties of β-barrel domain peptides obtained by membrane fractionation of a limited tryptic hydrolysate of β-lactoglobulin. J. Agric. Food Chem., 44, 3437–43.

    CAS  Google Scholar 

  • Hunt, J.A. and Dalgleish, D.G. (1995) Heat stability of oil-in-water emulsions containing milk proteins: effect of ionic strength and pH. J. Food Sci., 60, 1120–3.

    CAS  Google Scholar 

  • Hunt, J.A. and Dalgleish, D.G. (1996) The effect of the presence of KCl on the adsorption behaviour of whey protein and caseinate in oil-in-water emulsions. Food Hydrocoll., 10, 159–65.

    CAS  Google Scholar 

  • Hunt, J.A., Dickinson, E. and Home, D.S. (1993) Competitive displacement of proteins in oil-in-water emulsions containing calcium ions. Colloids Surf. A, 71, 197–203.

    CAS  Google Scholar 

  • Husband, F.A. and Wilde, P.J. (1998) The effects of caseinate sub-micelles and lecithin on the thin film drainage and behaviour of commercial caseinate. J. Colloid Interface Sci., 205, 316–22.

    CAS  Google Scholar 

  • Husband, F.A., Wilde, P.J., Mackie, A.R. and Garrood, M.J. (1997) A comparison of the functional properties of β-casein and dephosphorylated β-casein. J. Colloid Interface Sci., 195, 77–85.

    CAS  Google Scholar 

  • Jost, R. (1993) Functional characteristics of dairy proteins. Trends Food Sci. Technol., 4, 283–8.

    CAS  Google Scholar 

  • Jost, R., Dannenberg, F. and Rosset, J. (1989) Heat-set gels based on oil/water emulsions: an application of whey protein functionality. Food Microstruct., 8, 23–8.

    CAS  Google Scholar 

  • Karlskind, D., Laye, I., Morr, C.V. and Schenz, T.W. (1996) Emulsifying properties of lipid-reduced and calcium-reduced protein concentrates. J. Food Sci., 61, 54–8.

    Google Scholar 

  • Kato, A., Mifuru, R., Matsudomi, N. and Kobayashi, K. (1992) Functional casein-polysaccharide conjugates prepared by controlled dry heating. Biosci. Biotechnol. Biochem., 56, 567–71.

    CAS  Google Scholar 

  • Kato, A., Takhashi, A., Matsudomi, N. and Kobayashi, K. (1983) Determination of foaming properties by conductivity measurements. J. Food Sci., 48, 62–5.

    CAS  Google Scholar 

  • Kauten, R.J., Maneval, J.E. and McCarthy, M.J. (1991) Fast determination of spatially localized volume fractions in emulsions. J. Food Sci., 56, 799–801, 847.

    CAS  Google Scholar 

  • Kella, N.K.D., Yang, S.T. and Kinsella, J.E. (1989) Effect of disulfide bond cleavage on structural and interfacial properties of whey proteins. J. Agric. Food Chem., 37, 1203–10.

    CAS  Google Scholar 

  • Koczo, K., Nikolov, A.D., Wasan, D.T., Borwankar, R.P. and Gonsalves, A. (1996) Layering of sodium caseinate sub-micelles in thin liquid films—a new stability mechanism for food dispersions. J. Colloid Interface Sci., 178, 694–702.

    CAS  Google Scholar 

  • Krägel, J., Bree, M., WĂ¼stneck, R., Makievski, A.V., Grigoriev, D.O., Senkel, O., Miller, R. and Fainerman, V.B. (1998) Dynamics and thermodynamics of spread and adsorbed food protein layers at the water/air interface. Nahrung-Food, 42, 229–31.

    Google Scholar 

  • Krägel, J., WĂ¼stneck, R., Husband, F., Wilde, P.J., Makievski, A.V., Grigoriev, D.O. and Li, J.B. (1999) Properties of mixed protein/surfactant adsorption layers. Colloids Surf B, 12, 399–407.

    Google Scholar 

  • Kull, T., Nylander, T., Tiberg, F. and Wahlgren, N.M. (1997) Effect of surface properties and added electrolyte on the structure of β-casein layers adsorbed at the solid/aqueous interface. Langmuir, 13, 5141–7.

    CAS  Google Scholar 

  • Leaver, J., Law, A.J.R. and Home, D.S. (1999) Caseinate-stabilized emulsions: influence of ageing, pH and oil phase on the behaviour of individual protein components. In Food Emulsions and Foams: Interfaces, Interactions and Stability, (E. Dickinson and J.M. Rodriguez Patino eds.) Royal Society of Chemistry, Cambridge, pp. 258–68.

    Google Scholar 

  • Leclerc, E. and Calmettes, P. (1997) Interactions in micellar solutions of β-casein. Phys. Rev. Lett., 78, 150–3.

    CAS  Google Scholar 

  • Leermakers, F.A.M., Atkinson, P.J., Dickinson, E. and Home, D.S. (1996) Self-consistent-field modelling of adsorbed β-casein: effects of pH and ionic strength on surface coverage and density profile. J. Colloid Interface Sci., 178, 681–93.

    CAS  Google Scholar 

  • Lieske, B. and Konrad, G. (1996) Physicochemical and functional properties of whey protein as affected by limited papain proteolysis and selective ultrafiltration. Int. Dairy. J., 6, 13–31.

    CAS  Google Scholar 

  • Liu, M. and Damodaran, S. (1999) Effect of transglutaminase-catalyzed polymerization of β-casein on its emulsifying properties. J. Agric. Food Chem., 47, 1514–9.

    CAS  Google Scholar 

  • Lucassen, J. (1981) Dynamic properties of free liquid films and foams. In Anionic Surfactants: Physical Chemistry of Surfactant Action, (E.H. Lucassen-Reynders ed.) Marcel Dekker, New York, pp. 217–65.

    Google Scholar 

  • Lucassen-Reynders, E.H. (1993) Interfacial elasticity in emulsions and foams. Food Struct., 12, 1–12.

    CAS  Google Scholar 

  • Lucassen-Reynders, E.H. and Benjamins, J. (1999) Dilational rheology of proteins adsorbed at fluid interfaces. In Food Emulsions and Foams: Interfaces, Interactions and Stability, (E. Dickinson and J.M. Rodriguez Patino eds.) Royal Society of Chemistry, Cambridge, pp. 195–206.

    Google Scholar 

  • Lynch, A.G. and Mulvihill, D.M. (1997) Effect of sodium caseinate on the stability of cream liqueurs. Int. J. Dairy Technol., 50, 1–7.

    CAS  Google Scholar 

  • Mackie, A.R., Gunning, A.P., Wilde, P.J. and Morris, V.J. (1999) Orogenic displacement of protein from the air/water interface by competitive adsorption. J. Colloid Interface Sci., 210, 157–66.

    CAS  Google Scholar 

  • Mackie, A.R., Mingins, J. and North, A.N. (1991) Characterization of adsorbed layers of a disordered coil protein on polystyrene latex. J. Chem. Soc. Faraday Trans., 87, 3043–9.

    CAS  Google Scholar 

  • MacRitchie, F. (1986) Spread monolayers of proteins. Adv. Colloid Interface Sci., 25, 341–85.

    CAS  Google Scholar 

  • McClements, D.J. (1999) Food Emulsions: Principles, Practice and Techniques, CRC Press, Boca Raton, FL.

    Google Scholar 

  • McClements, D.J., Monahan, F.J. and Kinsella, J.E. (1993a) Effect of emulsion droplets on the rheology of whey protein isolate gels. J. Texture Stud., 24, 411–22.

    Google Scholar 

  • McClements, D.J., Monahan, F.J. and Kinsella, J.E. (1993b) Disulfide bond formation affects stability of whey protein isolate emulsions. J. Food Sci., 58, 1036–9.

    CAS  Google Scholar 

  • McDonald, P.J., Ciampi, E., Keddie, J.L., Heidenreich, M. and Kimmich, R. (1999) Magnetic resonance determination of the spatial dependence of the droplet size distribution in the cream layer of oil-in-water emulsions: evidence for the effects of depletion flocculation. Phys. Rev. E., 59, 874–84.

    CAS  Google Scholar 

  • Mitchell, J.R. (1986) Foaming and emulsifying properties of proteins. In Developments in Food Proteins, Vol. 4. (B.F.J. Hudson ed.) Elsevier Applied Science, London, pp. 291–338.

    Google Scholar 

  • Monahan, F.J., McClements, D.J. and Kinsella, J.E. (1993) Polymerization of whey proteins in whey protein-stabilized emulsions. J. Agric. Food Chem., 41, 1826–9.

    CAS  Google Scholar 

  • Monahan, F.J., McClements, D.J. and German, J.B. (1996) Disulfide-mediated polymerization reactions and physical properties of heated WPI-stabilized emulsions. J. Food Sci., 61, 504–9.

    CAS  Google Scholar 

  • Morr, C.V. (1982) Functional properties of milk proteins and their use as functional ingredients. In Developments in Dairy Chemistry, (P.F. Fox ed.) Applied Science, London, pp. 375–99.

    Google Scholar 

  • Mulder, H. and Walstra, P. (1974) The Milk Fat Globule, Pudoc, Wageningen, Netherlands.

    Google Scholar 

  • Mulvihill, D.M. and Fox, P.F. (1989) Physico-chemical and functional properties of milk proteins. In Developments in Dairy Chemistry, Vol. 4, (P.F. Fox ed.) Elsevier Applied Science, London, pp. 131–72.

    Google Scholar 

  • Mulvihill, D.M. and Murphy, P.C. (1991) Surface-active and emulsifying properties of caseins/caseinates as influenced by state of aggregation. Int. Dairy J., 1, 13–37.

    CAS  Google Scholar 

  • Murphy, J.M. and Fox, P.F. (1991) Functional properties of αs-κ-or β-rich casein fractions. Food Chem., 39, 211–28.

    CAS  Google Scholar 

  • Murray, B.S. (1998) Interfacial rheology of mixed food protein and surfactant adsorption layers with respect to emulsion and foam stability. In Proteins at Liquid Interfaces, (D. Möbius and R. Miller eds.) Elsevier, Amsterdam, pp. 179–220.

    Google Scholar 

  • Murray, B.S. and Dickinson, E. (1996) Interfacial rheology and the dynamic properties of adsorbed films of food proteins and surfactants. Food Sci. Technol. Int., (Japan) 2, 131–45.

    CAS  Google Scholar 

  • Murray, B.S., Dickinson, E., McCarney, J.M., Nelson, P.V. and Whittle, M. (1998a) Observation of the dynamic colloidal interaction forces between casein-coated latex particles. Langmuir, 14, 3466–9.

    CAS  Google Scholar 

  • Murray, B.S., Færgemand, M., Trotereau, M. and Ventura, A. (1999) Comparison of the dynamic behaviour of protein films at air-water and oil-water interfaces. In Food Emulsions and Foams: Interfaces, Interactions and Stability, (E. Dickinson and J.M. Rodriguez Patino eds.) Royal Society of Chemistry, Cambridge, pp. 223–35.

    Google Scholar 

  • Murray, B.S., Ventura, A. and Lallemant, C. (1998b) Dilatational rheology of protein + non-ionic surfactant films at the air-water and oil-water interfaces. Colloids Surf. A, 143, 211–9.

    CAS  Google Scholar 

  • Nagasawa, K., Takahashi, K. and Hattori, M. (1996) Improved emulsifying properties of β-lactoglobulin by conjugating with carboxymethyl dextran. Food Hydrocoll., 10, 63–7.

    CAS  Google Scholar 

  • Newling, B., Glover, P.M., Keddie, J.L., Lane, D.M. and McDonald, P.J. (1997) Concentration profiles in creaming oil-in-water emulsion layers determined with stray field magnetic resonance imaging. Langmuir, 13, 3621–6.

    CAS  Google Scholar 

  • Nylander, T. (1998) Protein adsorption in relation to solution association and aggregation. In Biopolymers at Interfaces, (M. Malmsten ed.) Marcel Dekker, New York, pp. 409–52.

    Google Scholar 

  • Nylander, T. and Wahlgren, N.M. (1994) Competitive and sequential adsorption of β-casein and β-lactoglobulin on hydrophobic surfaces and the interfacial structure of β-casein. J. Colloid Interface Sci., 162, 151–62.

    CAS  Google Scholar 

  • Nylander, T. and Wahlgren, N.M. (1997) Forces between adsorbed layers of β-casein. Langmuir, 13, 6219–25.

    CAS  Google Scholar 

  • Okumura, K., Miyake, Y., Taguchi, H. and Shimabayashi, Y. (1990) Formation of stable protein foam by intermolecular disulfide cross-linkages in thiolated αs1-casein as a model. J. Agric. Food Chem., 38, 1303–6.

    CAS  Google Scholar 

  • Paquin, P. (1999) Technological properties of high pressure homogenizers: the effect of fat globules, milk proteins and polysaccharides. Int. Dairy J., 9, 329–35.

    CAS  Google Scholar 

  • Pearce, K.N. and Kinsella, J.E. (1978) Emulsifying properties of proteins: evaluation of a turbidimetric technique. J. Agric. Food Chem., 26, 716–23.

    CAS  Google Scholar 

  • Pelan, B.M.C., Watts, K.M., Campbell, I.J. and Lips, A. (1997) The stability of aerated milk protein emulsions in the presence of small molecule surfactants. J. Dairy Sci., 80, 2631–8.

    CAS  Google Scholar 

  • Phillips, L.G., German, J.B., O’Neill, T.E., Foegeding, E.A., Harwalkar, V.R., Kilara, A., Lewis, B.A., Mangino, M.E., Morr, C.V., Regenstein, J.M., Smith, D.M. and Kinsella, J.E. (1990b) Standardized procedure for measuring foaming properties of three proteins: a collaborative study. J. Food Sci., 55, 1441–4, 1453.

    CAS  Google Scholar 

  • Phillips, L.G., Schulman, W. and Kinsella, J.E. (1990a) pH and heat treatment effects on foaming of whey protein isolate. J. Food Sci., 55, 1116–9.

    Google Scholar 

  • Phillips, L.G., Whitehead, D.M. and Kinsella, J. (1994) Structure-Function Properties of Food Proteins, Academic Press, San Diego.

    Google Scholar 

  • Phillips, L.G., Yang, S.T. and Kinsella, J.E. (1991) Neutral salt effects on stability of whey protein isolate foams. J. Food Sci., 56, 588–9.

    CAS  Google Scholar 

  • Puff, N., Cagna, A., AguiĂ©-BĂ©ghin, V. and Douillard, R. (1998) Effect of ethanol on the structure and properties of β-casein adsorption layers at the air/buffer interface. J. Colloid Interface Sci., 208, 405–14.

    CAS  Google Scholar 

  • Relkin, R., Liu, T. and Launay, B. (1993) Effects of pH on gelation and emulsification of a β-lactoglobulin concentrate. J. Dispersion Sci. Technol., 14, 335–54.

    CAS  Google Scholar 

  • Rientjes, G.J. and Walstra, P. (1993) Factors affecting the stability of whey-based emulsions. Milchwissenschaft, 48, 63–7.

    CAS  Google Scholar 

  • Rodriguez Patino, J.M., Carrera Sanchez, C. and Rodriguez Nino, J.M. (1999) Is Brewster angle microscopy a useful technique to distinguish between isotropic domains in β-casein-monoolein mixed monolayers at the air-water interface? Langmuir, 15, 4777–88.

    CAS  Google Scholar 

  • Schmidt, D.G. (1982) Association of caseins and casein micelle structure. In Developments in Dairy Chemistry, (P.F. Fox ed.) Applied Science, London, pp. 61–86.

    Google Scholar 

  • Schokker, E.P. and Dalgleish, D.G. (1998) The shear induced destabilization of oil-in-water emulsions using caseinate as emulsifier. Colloids Surf. A, 145, 61–9.

    CAS  Google Scholar 

  • Segall, K.I. and Goff, H.D. (1999) Influence of adsorbed milk protein type and surface concentration on the quiescent and shear stability of butteroil emulsions. Int. Dairy J., 9, 683–91.

    CAS  Google Scholar 

  • Shimizu, M., Ametani, A., Kaminogawa. S. and Yamauchi, K. (1986) The topography of αs1-casein adsorbed to an oil/water interface: an analytical approach using proteolysis. Biochim. Biophys. Acta, 869, 259–64.

    CAS  Google Scholar 

  • Singh, A.M. and Dalgleish, D.G. (1998) The emulsifying properties of hydrolyzates of whey proteins. J. Dairy Sci., 81, 918–24.

    CAS  Google Scholar 

  • Singh, H., Fox, P.F. and Cuddigan, M. (1993) Emulsifying properties of protein fractions prepared from heated milk. Food Chem., 47, 1–6.

    CAS  Google Scholar 

  • Smulders, P.E.A., Caessens. P.W.J.R. and Walstra, P. (1999) Emulsifying properties of β-casein and its hydrolysates in relation to their molecular properties. In Food Emulsions and Foams: Interfaces, Interactions and Stability, (E. Dickinson and J.M. Rodriguez Patino eds.) Royal Society of Chemistry, Cambridge, pp. 61–9.

    Google Scholar 

  • Srinivasan, M., Singh, H. and Munro, P.A. (1999) Adsorption behaviour of sodium and calcium caseinates in oil-in-water emulsions. Int. Dairy J., 9, 337–41.

    CAS  Google Scholar 

  • Swaisgood, H.E., Huang, X.L.L. and Catignani, G.L. (1996) Characteristics of the products of limited proteolysis of β-lactoglobulin. ACS Symp. Ser., 650, 166–77.

    Google Scholar 

  • ter Beek, L.C., Ketelaars, M., McCain, D.C., Smulders, P.E.A., Walstra, P. and Hemminga, M.A. (1996) Nuclear magnetic resonance study of the conformation and dynamics of β-casein at the oil/water interface in emulsions. Biophys. J., 70, 2396–402.

    Google Scholar 

  • Tuinier, R. and de Kruif, C.G. (1999) Phase separation, creaming, and network formation of oil-in-water emulsions induced by an exocellular polysaccharide. J. Colloid Interface Sci., 218, 201–10.

    CAS  Google Scholar 

  • Tomas, A., Courthaudon, J.-L., Paquet. D. and Lorient, D. (1994) Effect of surfactant on some physicochemical properties of dairy oil-in-water emulsions. Food Hydrocoll., 8, 543–51

    CAS  Google Scholar 

  • Velev, O.D., Campbell, B.E. and Borwankar, R.P. (1998) Effect of calcium ions and environmental conditions on the properties of β-casein stabilized films and emulsions. Langmuir, 14, 4122–30.

    CAS  Google Scholar 

  • Walstra, P. (1983) Formation of emulsions. In Encyclopedia of Emulsion Technology, Vol. 1, (P. Becher ed.) Marcel Dekker, New York, pp. 57–127.

    Google Scholar 

  • Walstra, P. (1989) Principles of foam formation and stability. In Foams: Physics, Chemistry and Structure, (A.J. Wilson ed.) Springer-Verlag, Berlin, pp. 1–15.

    Google Scholar 

  • Walstra, P. and Smulders, I. (1997) Making emulsions and foams: an overview. In Food Colloids: Proteins, Lipids and Polysaccharides, (E. Dickinson and B. BergenstĂ¥hl eds.) Royal Society of Chemistry, Cambridge, pp. 367–81.

    Google Scholar 

  • Wijmans, C.M. and Dickinson, E. (1998) Simulation of interfacial shear and dilatational rheology of an adsorbed protein monolayer modelled as a network of spherical particles. Langmuir, 14, 7278–86.

    CAS  Google Scholar 

  • Wijmans, C.M. and Dickinson, E. (1999a) Brownian dynamics simulation of a bonded network of reversibly adsorbed particles: towards a model of protein adsorbed layers. Phys. Chem. Chem. Phys., 1, 2141–7.

    CAS  Google Scholar 

  • Wijmans, C.M. and Dickinson, E. (1999b) Brownian dynamics of the simulation of the displacement of a protein monolayer by competitive adsorption. Langmuir, 15, 8344–8.

    CAS  Google Scholar 

  • Wilde, P.J. and Clark, D.C. (1993) The competitive displacement of β-lactoglobulin by Tween 20 at the oil-water interface. J. Colloid Interface Sci., 155, 48–54.

    CAS  Google Scholar 

  • Wilde, P.J. and Clark, D.C. (1996) Foam formation and stability. In Methods of Testing Protein Functionality, (G.M. Hall ed.) Chapman & Hall, London, pp. 110–52.

    Google Scholar 

  • Wright, D.J. and Hemmant, J. (1987) Foaming properties of protein solutions: comparison of large-scale whipping and conductimetric methods. J. Sci. Food Agric, 41, 361–71.

    CAS  Google Scholar 

  • WĂ¼stneck, R., Krägel, J., Miller, R. Wilde, P. and Clark, D.C. (1996) The adsorption of surface-active complexes between β-casein, β-lactoglobulin and ionic surfactants and their shear rheological behaviour. Colloids Surf. A, 114, 255–65.

    Google Scholar 

  • Xiong, Y.L. and Kinsella, J.E. (1991) Influence of fat globule membrane composition and fat type on the rheological properties of milk-based composite gels. Milchwissenschaft, 46, 207–12.

    CAS  Google Scholar 

  • Yildirim, M., Hettiarachchy, N.S. and Kalapathy, U. (1996) Properties of biopolymers from crosslinking whey protein isolate and soybean US globulin. J. Food Sci., 61, 1129.

    CAS  Google Scholar 

  • Zhu, H.M. and Damodaran, S. (1994) Heat-induced conformational changes in whey protein isolate and its relation to foaming properties. J. Agric. Food Chem., 42, 846–55.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dickinson, E. (2003). Interfacial, Emulsifying and Foaming Properties of Milk Proteins. In: Fox, P.F., McSweeney, P.L.H. (eds) Advanced Dairy Chemistry—1 Proteins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8602-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8602-3_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47271-8

  • Online ISBN: 978-1-4419-8602-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics