Skip to main content

Manufacture and Properties of Milk Powders

  • Chapter

Abstract

The first recoded reference to the manufacture of milk powder as a method for preserving milk was by Marco Polo, who observed the use of milk powder by Mongol soldiers in the 13th Century (Hall and Hedrick, 1975). The earliest modern commercial concentrated dairy products were air-dried concentrated milk tablets, developed in 1809, and vacuum-concentrated sweetened and unsweetened condensed milks, produced by Gail Borden in 1856. The second half of the 19th Century saw the production of solidified high-total solids milk products (Caríc and Kaláb, 1987). Roller drying was introduced around 1902 and rapidly became the predominant method for producing dried dairy products, such as infant formulae.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ADMI (1971) Standards for grades of dry milk including analysis, Bulletin 916, American Dry Milk Institute, Inc., Chicago, p. 26.

    Google Scholar 

  • Aguilar, C.A. and Ziegler, G.R. (1994a) Physical and microscopic characterization of dry whole milk with altered lactose content. 1. Effect of lactose concentration. J. Dairy Sci., 11, 1189–97.

    Article  Google Scholar 

  • Aguilar, C.A. and Ziegler, G.R. (1994b) Physical and microscopic characterization of dry whole milk with altered lactose content. 2. Effect of lactose crystallisation. J. Dairy Sci., 11, 1198–204.

    Article  Google Scholar 

  • Al-Talib, N.A. (1984) Effect of Storage Conditions on Some Chemical, Physico-Chemical and Nutritional Properties of Skim Milk Powder, PhD Thesis, National University of Ireland, Cork.

    Google Scholar 

  • Augustin, M.A. (1991) Developing non-fat milk powders with specific functional properties. CSIRO Food Res. Quarterly Reports, 51, 16–22.

    Google Scholar 

  • Auldist, M.J., Coats, S.T., Sutherland, B.J., Clarke, P.T., McDowell, G.H. and Rogers, G.L. (1996) Effect of somatic cell count and stage of lactation on the quality of full cream milk powder. Aust. J. Dairy Technol., 51, 94–8.

    Google Scholar 

  • Baldwin, A.J. and Ackland, J.D. (1991) Effect of preheat treatment and storage on the properties of whole milk powder. Changes in physical and chemical properties. Neth. Milk Dairy J., 45, 169–81.

    CAS  Google Scholar 

  • Baldwin, A.J., Cooper, H.R. and Palmer, K.C. (1991) Effect of preheat treatment and storage on the properties of whole milk powder. Changes in sensory properties. Neth. Milk Dairy J., 45, 97–116.

    Google Scholar 

  • Berlin, E., Anderson, B.A. and Pallansch, M.J. (1968) Water vapour sorption properties of various dried milks and wheys. J. Dairy Sci., 51, 1339–74.

    Article  CAS  Google Scholar 

  • Boersen, A.C. (1990) Spray drying technology — atomisation and straight through agglomeration. J. Soc. Dairy Technol., 43, 5–7.

    Article  Google Scholar 

  • Boon, P.M. (1976) The effect of pre-heat treatment on the storage stability of whole milk powder. N.Z. J. Dairy Sci. Technol., 11, 278–80.

    Google Scholar 

  • Buma, T.J. (1971) Free fat in spray-dried whole milk. 1. General introduction and brief review of literature. Neth. Milk. Dairy J., 25, 33–41.

    CAS  Google Scholar 

  • Carie, M. and Kaláb, M. (1987) Effects of drying techniques on the milk powder quality and microstructure: A review. Food Microstruct., 6, 171–80.

    Google Scholar 

  • Celstino, E.L., Iyer, M. and Roginski, H. (1997a). The effects of refrigerated storage of raw milk on the quality of whole milk powder stored for different temperatures. Int. Dairy J., 1, 119–27.

    Article  Google Scholar 

  • Celstino, E.L., Iyer, M. and Roginski, H. (1997b) Reconstituted UHT-treated milk: Effects of raw milk, powder quality and storage conditions of UHT milk on its physico-chemical attributes and flavour. Int. Dairy J., 7, 129–40.

    Article  Google Scholar 

  • Cheftel, J.-C. and Lorient, D. (1982) Les propriétés fonctionnelles des protéines laitiéres et leur amélioration. Lait, 62, 435–83.

    Article  CAS  Google Scholar 

  • Chen, X.D. (1994) Towards a comprehensive model based control of milk drying process. Drying Technol., 12, 1105–30.

    Article  Google Scholar 

  • Chen, X.D. and Lloyd, R.J. (1997) Some aspects of measuring the size and rate of dispersion of milk powder agglomerates using the Malvern Particle Sizer 2600c. J. Dairy Res., 61, 201–8.

    Article  Google Scholar 

  • Chong, L.V., Shaw, I.R. and Chen, X.D. (1996) Exothermic reactivities of skim and whole milk powders as measured using a novel procedure. J. Food Eng., 30, 185–96.

    Article  Google Scholar 

  • Corredig, M. and Dalgleish, D.G. (1999) The mechanisms of heat-induced interaction of whey proteins with casein micelles in milk. Int. Dairy J., 9, 233–6.

    Article  Google Scholar 

  • Creamer, L.K. and Matheson, A.R. (1978) The effect of pH on protein aggregation in heated skim milk. N.Z. J. Dairy Sci. Technol., 13, 9–15.

    CAS  Google Scholar 

  • Daemen, A.L.H. (1984) The destruction of enzymes and bacteria during the spray-drying of milk and whey. 4. A comparison of theoretical computed results concerning the destruction of phosphatase with those obtained experimentally. Neth. Milk Dairy J., 38, 55–70.

    CAS  Google Scholar 

  • Dalgleish, D.G. (1979) Proteolysis and aggregation of casein micelles treated with immobilized or soluble chymosin. J. Dairy Res., 46, 643–61.

    Google Scholar 

  • Dalgleish, D.G. (1992) The enzymatic coagulation of milk, in Advanced Dairy Chemistry 1-Proteins, 2nd edn, Vol. 1, (P.F. Fox ed.) Elsevier Applied Science, London, pp. 579–620.

    Google Scholar 

  • Dalgleish, D.G. (1996) Food emulsions, in Emulsions and Emulsion Stability, (J. Sjöblom ed.) Marcel Dekker, New York, pp. 287–31.

    Google Scholar 

  • Davies, D.T. and White, J.C.D. (1966) The stability of milk protein to heat. 1. Subjective measurement of heat stability of milk. J. Dairy Res., 33, 67–81.

    Article  Google Scholar 

  • de Knegt, R.J. and van den Brink, H. (1998) Improvement of the drying oven method for the determination of the moisture content of milk powder. Int. Dairy J., 8, 733–8.

    Article  Google Scholar 

  • Dewettinck, K., de Moor, H. and Huyghebaert, A. (1996) The free fat content of dried milk products and flow properties of milk chocolate. Milchwissenschaft, 51, 25–8.

    CAS  Google Scholar 

  • de Wit, J.N. (1981) Structure and functional behaviour of whey proteins. Neth. Milk Dairy J., 35, 47–64.

    Google Scholar 

  • Doka, O., Ajtony, Z., Bicanic, D. and Koehorst, R. (2000) Assessing the extent of degradation in the UV radiation and heat-catalysed oxidised whole milk powder: the UV photoacoustic and diffuse reflectance spectroscopies versus the peroxide value. Appl. Spect., 54, 1405–8.

    Article  CAS  Google Scholar 

  • Driscoll, N.R., Brennard, C.P. and Hendricks, D.G. (1985) Sensory quality of nonfat dry milk after long-term storage. J. Dairy Sci., 68, 1931–5.

    Article  Google Scholar 

  • Early, R. (1990) The use of high-fat and specialized milk powders. J. Soc. Dairy Technol., 43, 53–6.

    Article  Google Scholar 

  • Early, R. (1998) Milk concentrates and milk powders, in The Technology of Dairy Products, 2nd edn, (R. Early ed.) Blackie Academic and Professional, London, pp. 228–300.

    Google Scholar 

  • El-Gazzar, F.E. and Marth, E.H. (1991) Ultrafiltration and reverse osmosis in dairy technology: a review. J. Food Prot., 54, 801–9.

    Google Scholar 

  • Euston, S.R. and Hirst, R.L. (1999) Comparison of the concentration-dependent emulsifying properties of protein products containing aggregated and non-aggregated milk protein. Int. Dairy J., 10, 693–701.

    Article  Google Scholar 

  • Fairise, J.-F., Cayot, P. and Lorient, D. (1999) Characterisation of the protein composition of casein micelles after heating. Int. Dairy J., 9, 249–54.

    Article  CAS  Google Scholar 

  • Fox, P.F. (1981) Heat-induced changes in milk preceding coagulation. J. Dairy Sci., 64, 2127–37.

    Article  CAS  Google Scholar 

  • Friedman, M. (1977) Advances in Experimental Medicine and Biology, Volume 86B: Protein Crosslinking. Plenum Press, New York.

    Google Scholar 

  • Garem, A., Schuck, P. and Maubois, J.-L. (2000) Cheesemaking properties of a new dairy-based powder made by a combination of microfiltration and ultrafiltration. Lait, 80, 25–32.

    Article  CAS  Google Scholar 

  • Guo, M.R., Hendricks, G.M., Kinstedt, P.S., Flynn, A. and Fox, P.F. (1996) Nitrogen and mineral distribution in infant formulae. Int. Dairy J., 6, 963–79.

    Article  CAS  Google Scholar 

  • Hall, C.W. and Hedrick, T.I. (1975) Drying of Milk and Milk Products, AVI Publishing Co. Ltd., Westport, CT.

    Google Scholar 

  • Hansen, R. (1985) Evaporation, Membrane Filtration and Spray Drying in Milk Powder and Cheese Production, North European Dairy Journal, Vanløse, Denmark.

    Google Scholar 

  • Heldman, D.R., Hall, C.H. and Hedrick, T.I. (1965) Vapor equilibrium relationships of dry milk. J. Dairy Sci., 48, 845–52.

    Article  CAS  Google Scholar 

  • Hols, G. and van Mil, P.J.J.M. (1991) An alternative process for the manufacture of whole milk powder. J. Soc. Dairy Technol., 44, 49–52.

    Article  Google Scholar 

  • Holsinger, V.H., McAloon, A.J., Onwulata, C.I. and Smith, P.W. (2000) Cost analysis of encapsulated spray-dried milk fat. J. Dairy Sci., 83, 2361–5.

    Article  CAS  Google Scholar 

  • Horton, B.S. (1997) What ever happened to the ultrafiltration of milk? Aust. J. Dairy Technol., 52, 47–9.

    Google Scholar 

  • Hough, G., Martinez, E. and Barbieri, T. (1992) Sensory thresholds of flavor defects in reconstituted whole milk powder. J. Dairy Sci., 75, 2370–4.

    Article  Google Scholar 

  • IDF (1978) Dried milk — Determination of titratable acidity. Standard 86. International Dairy Federation, Brussels.

    Google Scholar 

  • IDF (1979) Determination of the dispersibility and wettability of instant dried milk. Standard 87. International Dairy Federation, Brussels.

    Google Scholar 

  • IDF (1986) Dried milk and dried milk products — determination of bulk density. Standard 134. International Dairy Federation, Brussels.

    Google Scholar 

  • IDF (1988a) Milk based instant foods determination of fat content — Röse-Gottlieb method. Standard 123 A. International Dairy Federation, Brussels.

    Google Scholar 

  • IDF (1988b) Dried milk and dried milk products — determination of insolubility index. Standard 129A. International Dairy Federation, Brussels.

    Google Scholar 

  • IDF (1993a) Milk. Determination of nitrogen content (Kjeldahl method). Standard 20B. International Dairy Federation, Brussels.

    Google Scholar 

  • IDF (1993b) Dried milk and dried cream — determination of water content. Standard 26B. International Dairy Federation, Brussels.

    Google Scholar 

  • Jensen, J.D. (1975) Some recent advances in agglomeration, instantising and spray drying. Food Technol., 29(6), 60–71.

    Google Scholar 

  • Jimenez-Flores, R. and Kosikowski, F.W. (1986) Properties of ultrafiltered skim milk powder retentate. J. Dairy Sci., 69, 329–39.

    Article  CAS  Google Scholar 

  • Jones, A.D., Tier, C.M. and Wilkins, J.P.G. (1998) Analysis of the Maillard reaction products of β-lactoglobulin and lactose in skimmed milk powder by capillary electrophoresis and electrospray mass spectroscopy. J. Chromatogr. A, 822, 147–54.

    Article  CAS  Google Scholar 

  • Jost, R., Maire, J.-C., Maynard, F. and Secretin, M.-C. (1999) Aspects of whey protein usage in infant nutrition, a brief review. Int. J. Food Sci. Technol., 34, 533–42.

    Article  CAS  Google Scholar 

  • Jouppila, K. and Roos, Y.H. (1994a) Water sorption and time dependent phenomena of milk powders. J. Dairy Sci., 11, 1798–808.

    Article  Google Scholar 

  • Jouppila, K. and Roos, Y.H. (1994b) Glass transitions and crystallization in milk powder. J. Dairy Sci., 11, 2907–15.

    Article  Google Scholar 

  • Jouppila, K., Kansikas, J. and Roos, Y.H. (1997) Glass transition, water plasticisation, and lactose crystallization in skim milk powder. J. Dairy Sci., 80, 3152–60.

    Article  CAS  Google Scholar 

  • Keen, A.R., Boon, P.M. and Walker, N.J. (1976) Off-flavours in stored milk powder. 1. Isolation of monocarbonyl classes. N.Z. J. Dairy Sci. Technol., 11, 180–8.

    CAS  Google Scholar 

  • Kelly, P.M. (1982) The effect of preheat temperature and urea addition on the seasonal variation in the heat stability of skim-milk powder. J. Dairy Res., 49, 187–96.

    Article  CAS  Google Scholar 

  • Kelly, P.M., Kelly, J., Mehra, R., Oldfield, D.J., Raggett, E. and O’Kennedy, B.T. (2000) Implementation of integrated membrane processes for pilot scale development of fractionated milk components. Lait, 80, 139–53.

    Article  CAS  Google Scholar 

  • Kiesecker, F.G. and Aitken, B. (1988) An objective method for determination of heat stability of milk powders. Aust. J. Dairy Technol., 43, 26–31.

    Google Scholar 

  • Kiesecker, F.G. and Aitken, B. (1993) Recombined full-cream milk powder. Aust J. Dairy Technol., 48, 33–7.

    Google Scholar 

  • Kieseker, F.G. and Pearce, R.J. (1978) Producing heat stable milk powder. CSIRO Food Res. Quarterly, 38, 35–40.

    CAS  Google Scholar 

  • Kieseker, F.G. and Healy, D. (1996) Protein-adjusted non-fat milk powders. Aust. J. Dairy Technol., 51, 83–8.

    CAS  Google Scholar 

  • Kyle, W.S.A. (1993) Powdered milk, in Encyclopedia of Food Science, Food Technology and Nutrition, (R. McCrae, R.K. Robinson and M.J. Sadler eds.) Academic Press, New York, pp. 3700–13.

    Google Scholar 

  • Le Great, Y. and Brule, G. (1982) Effect of concentration and drying on mineral equilibria in skim milk and retentates. Lait, 62, 113–25.

    Article  Google Scholar 

  • Lenoir, J., Remeuf, F. and Schneid, N. (2000) Cheesemaking milk, in Cheesemaking: From Science to Quality Assurance, (A. Eck and J.-C. Gillis eds.) Lavoisier Publishing, Paris, pp. 280–96.

    Google Scholar 

  • Liang, J.-H. (2000) Kinetics of fluorescence formation in whole milk powder during oxidation. Food Chem., 71, 459–63.

    Article  CAS  Google Scholar 

  • Litman, I.I. and Ashworth, U.S. (1957) Insoluble scum-like materials on reconstituted whole milk powders. J. Dairy Sci., 40, 403–9.

    Article  Google Scholar 

  • Mahran, G.A., El-Ghandour, M.A., El-Bagoury, E.H. and Sayed, A.F. (1984) Effect of skim milk powder storage on ice cream quality. Egyptian J. Dairy Sci., 12, 267–73.

    CAS  Google Scholar 

  • Masters, K. (1991) Spray Drying Handbook. Longman Scientific and Technical, Harlow, U.K.

    Google Scholar 

  • McCluskey, S., Connolly, J.F., Devery, R., O’B rien, B., Kelly, J., Harrington, D. and Stanton, C. (1997) Lipid and cholesterol oxidation in whole milk powder during processing and storage. J. Food Sci., 62, 331–7.

    Google Scholar 

  • McGookin, B.J. and Augustin, M.A. (1997) Antioxidant activity of a heated casein-glucose mixture in full cream milk powder. Aust. J. Dairy Technol., 52, 15–9.

    CAS  Google Scholar 

  • McKenna, A.B. (1997) Examination of whole milk powder by confocal laser scanning microscopy. J. Dairy Res., 64, 423–32.

    Article  CAS  Google Scholar 

  • McKenna, A.B., Lloyd, R.J., Munro, P.A. and Singh, H. (1999) Microstructure of whole milk powder and of insolubles detected by powder functional testing. Scanning, 21, 305–15.

    Article  CAS  Google Scholar 

  • Mettler, A.E. (1980) Utilization of whey by-products for infant feeding. J. Soc. Dairy Technol., 33, 67–72.

    Article  CAS  Google Scholar 

  • Mistry, V.V. and Hassan, H.N. (1991) Delactosed high milk protein powder. 2. Physical and functional properties. J. Dairy Sci., 74, 3716–23.

    Article  CAS  Google Scholar 

  • Mistry, V.V. and Pulgar, J.B. (1996) Physical and storage properties of high milk protein powder. Int. Dairy J., 6, 195–203.

    Article  CAS  Google Scholar 

  • Mohammed, K.S. and Fox, P.F(1987) Heat-induced microstructural changes in casein micelles before and after coagulation. N.Z. J. Dairy Sci. Technol., 22, 191–203.

    Google Scholar 

  • Morrissey, P.A. (1969) The rennet hysteresis of heated milk. J. Dairy Res., 36, 333–41.

    Article  CAS  Google Scholar 

  • Muir, D.D. (1980) Concentration and milk powder quality, in Milk and Whey Powders, Society of Dairy Technology, Middlesex, UK, pp. 73–84.

    Google Scholar 

  • Muir, D.D. and Sweetsur, A.W.M. (1984) Optimization of the heat stability of protein-rich concentrates prepared by ultrafiltration of skim-milk. J. Food Technol., 19, 263–71.

    Article  CAS  Google Scholar 

  • Mulvihill, D.M. and Murphy, P.C. (1991) Surface active and emulsifying properties of caseins/caseinates as influenced by state of aggregation. Int. Dairy J., 1, 13–7.

    Article  CAS  Google Scholar 

  • Munns, R.J. (1989) Optimising milk powders for consumer use. Food Aust., 41, 938–40.

    Google Scholar 

  • Munns, R.J. (1991) High fat and full cream powders as food ingredients. CSIRO Food Res. Quarterly Reports, 51, 23–8.

    Google Scholar 

  • Nanua, J.N., McGregor, J.U. and Godbert, J.S. (2000) Influence of high-oryzanol rice bran oil on the oxidative stability of whole milk powder. J. Dairy Sci., 83, 2426–31.

    Article  CAS  Google Scholar 

  • Neff, E. and Morris, H.A.L. (1967) Agglomeration of milk powder and its influence on reconstitution properties. J. Dairy Sci., 51, 330–8.

    Article  Google Scholar 

  • Newstead, D.F., Baldwin, A.J. and Hughes, I.R. (1978) Factors affecting the viscosity of recombined sweetened condensed milk. N.Z. J. Dairy Sci. Technol., 13, 65–70.

    Google Scholar 

  • Nielsen, B., Staplefeldt, H. and Skibsted, L.H. (1997a) Early prediction of the shelf-life of medium-heat whole milk powders using stepwise multiple regression and principal component analysis. Int. Dairy J., 7, 341–8.

    Article  CAS  Google Scholar 

  • Nielsen, B., Staplefeldt, H. and Skibsted, L.H. (1997b) Differentiation between 15 whole milk powders in relation to oxidative stability during accelerated storage: analysis of variance and canonical variable analysis. Int. Dairy J., 7, 589–99.

    Article  CAS  Google Scholar 

  • Nieuwenhuijse, J.A., Timmermans, W. and Walstra, P. (1988) Calcium and phosphate paritions during the manufacture of sterilised concentrated milk and their relations to heat stability. Neth. Milk Dairy J., 42, 387–421.

    CAS  Google Scholar 

  • Niro Atomiser A/S (1978) Analytical Methods for Dry Milk Products, 4th edn, Niro Atomiser A/S, Copenhagen.

    Google Scholar 

  • Noh, B. and Richardson, T. (1989) Incorporation of radiolabelled whey proteins into the casein micelles by heat processing. J. Dairy Sci., 72, 1724–31.

    Article  CAS  Google Scholar 

  • Nursten, H.E. (1981) Recent developments in studies of the Maillard reaction. Food Chem., 6, 263–77.

    Article  CAS  Google Scholar 

  • O’Connell, J.E. and Fox, P.F. (1999) Heat-induced changes in the calcium sensitivity of caseins. Int. Dairy J., 9, 839–47.

    Article  CAS  Google Scholar 

  • O’Connell, J.E. and Fox, P.F. (2000) Heat stability of buttermilk. J. Dairy Sci., 83, 1728–32.

    Article  CAS  Google Scholar 

  • O’Connell, J.E. and Fox, P.F. (2001) Significance and possible applications of phenolic compounds in the production and quality of milk and dairy products. A review. Int. Dairy J., 11, 103–20.

    Article  CAS  Google Scholar 

  • O’Donnell, C.P., McKenna, B.M. and Herlihy, N. (1996) Drying of skim milk: opportunities for reduced steam. Drying Technol., 14, 513–28.

    Article  Google Scholar 

  • O’Sullivan, E.A., Kelly, P.M., Fitzgerald, R.J., O’Farrell, K., Murphy, M.F. and Harrington, D. (1999) Effect of β-lactoglobulin phenotype on whey protein nitrogen index and sulphydryl content of skim milk powder. Lait, 79, 229–44.

    Article  CAS  Google Scholar 

  • Oldfield, D.J. (1998) Heat Induced Whey Protein Reactions in Milk: Kinetics of Denaturation and Aggregation as Related to Milk Powder Manufacture, PhD Thesis, Massey University, Palmerstown North, New Zealand.

    Google Scholar 

  • Oldfield, D.J., Teehan, C.M. and Kelly, P.M. (2000) The effect of preheat treatment and other process parameters on the coffee stability of instant whole milk powder. Int. Dairy J., 10, 659–67.

    Article  Google Scholar 

  • Ontwulata, C.I., Konstance, R.P. and Holsinger, V.H. (1996) Flow properties of encapsulated milkfat powders as affected by flow agents. J. Food Sci., 61, 1211–5.

    Article  Google Scholar 

  • Parodi, P.W. (1996) Milk fat components: possible chemopreventative agents for cancer and other diseases. Aust. J. Dairy Technol., 51, 24–32.

    CAS  Google Scholar 

  • Parris, N., White, A.E. and Farrell, H.M., Jr. (1990) Identification of altered proteins in nonfat dry milk powder prepared from heat-treated skim milk. J. Agric. Food Chem., 38, 824–9.

    Article  CAS  Google Scholar 

  • Patel, R.S. and Mistry, V.V. (1997) Physicochemical and structural properties of ultrafiltered buffalo milk and milk powder. J. Dairy Sci., 80, 812–7.

    Article  CAS  Google Scholar 

  • Pellegrino, L., Resimini, L. and Luf, W. (1995) Assessment (indices) of heat treatment of milk, in, Heat-Induced Changes in Milk, (P.F. Fox ed.) Special Issue 9501, International Dairy Federation, Brussels, pp. 419–53.

    Google Scholar 

  • Pellegrino, L., van Boekel, M.A.J.S., Gruppen, H., Resmini, P. and Pagani, M.A. (1999) Heat-induced aggregation and covalent linkages in β-casein model system. Int. Dairy J., 9, 255–60.

    Article  CAS  Google Scholar 

  • Písecký, J. (1978) Bulk density of milk powders. Food Technol., 43, 4–7.

    Google Scholar 

  • Piseckí, J. (1997) Handbook of Milk Powder Manufacture, Niro A/S, Copenhagen.

    Google Scholar 

  • Radayeva, I.A., Dmitrieva, L.S. and Bekhova, E.A. (1974) The effect of added antioxidants on keeping quality and on phospholipid fractions of whole milk powder. Proc. XIX International Dairy Congr. (New Delhi) E618.

    Google Scholar 

  • Refstrup, E. (1995) Advances in spray drying of food products. J. Soc. Dairy Technol., 48, 50–4.

    Article  Google Scholar 

  • Rennie, P.R., Chen, X.D., Hargreaves, C. and Mackerth, A.R. (1999) A study of cohesion of milk powders. J. Food Eng., 39, 277–84.

    Article  Google Scholar 

  • Richards, E.L. (1963) A quantitative study of the changes in dried skim-milk and lactose casein in the ‘dry’ state during storage. J. Dairy Res., 30, 223–34.

    Article  CAS  Google Scholar 

  • Roetman, K. (1979) Crystalline lactose and the structure of spray-dried milk products as observed by scanning electron microscopy. Neth. Milk Dairy J., 33, 1–11.

    CAS  Google Scholar 

  • Saboya, L.V. and Maubois, J.-L. (2000) Current developments of microfiltration technology in the dairy industry. Lait, 80, 541–53.

    Article  CAS  Google Scholar 

  • Saito, Z. (1985) Particle structure in spray-dried whole milk and in instant skim milk powder as related to lactose crystallisation. Food Microstruct., 4, 333–40.

    CAS  Google Scholar 

  • Saltmarch, M. and Labuza, T.P. (1980) Influence of the physicochemical state of lactose in spray-dried sweet-whey powders. J. Food Sci., 45, 1231–6.

    Article  CAS  Google Scholar 

  • Sanderson, W.B. (1970) Seasonal variations affecting the determination of the whey protein nitrogen index of skim milk powder. N.Z. J. Dairy Sci. Technoi., 5, 48–52.

    CAS  Google Scholar 

  • Sanderson, W.B. (1978) Instant milk powders: manufacture and keeping quality. N.Z. J. Dairy Sci. Technol., 13, 137–43.

    Google Scholar 

  • Schebor, C., Beura, M.P., Karel, M. and Chirife, J. (1999) Color formation due to non-enzymatic browning in amorphous, glassy, anhydrous, model systems. Food Chem., 65, 427–32.

    Article  CAS  Google Scholar 

  • Sharma, K.S. and Tandon, K.C. (1986) Effect of storage on the nitrogen distribution of skim milk powders. Indian J. Dairy Sci., 39, 330–2.

    Google Scholar 

  • Shiratsuchi, H., Shimoda, M., Imayoshi, K., Noda, K. and Osajima, Y. (1994a) Volatile flavour compounds in spray-dried skim milk powder. J. Agric. Food Chem., 42, 984–8.

    Article  CAS  Google Scholar 

  • Shiratsuchi, H., Shimoda, M., Imayoshi, K., Noda, K. and Osajima, Y. (1994b) Off-flavour compounds in spray-dried skim milk powder. J. Agric. Food Chem., 42, 1323–7.

    Article  CAS  Google Scholar 

  • Shiratsuchi, H., Yoshimura, Y., Shimoda, M., Noda, K. and Osajima, Y. (1995) Contributors to sweet and milky odour attributes of spray dried skim milk powder. J. Agric. Food Chem., 43, 2453–7.

    Article  CAS  Google Scholar 

  • Singh, H. and Creamer, L.K. (1991) Denaturation, aggregation and heat stability of milk protein during the manufacture of skim milk powder. J. Dairy Res., 58, 269–83.

    Article  CAS  Google Scholar 

  • Singh, H. and Newstead, D.F. (1992) Aspects of milk proteins in milk powder manufacture, in Advanced Dairy Chemistry 1-Proteins, 2nd edn, (P.F. Fox ed.) Elsevier Applied Science, London, pp. 735–66.

    Google Scholar 

  • Singh, H. and Tokley, R.P. (1990) Effects of preheat treatments and buttermilk addition on the seasonal variations in the heat stability of recombined evaporated milk and reconstituted concentrated milk. Aust. J. Dairy Technol., 45, 10–6.

    Google Scholar 

  • Singh, H., Sharma, R. and Tokley, R.P. (1992) Influence of incorporation of soya lecithin into skim milk powder on the heat stability of recombined evaporated milk. Aust. J. Dairy Technol., 47, 33–7.

    CAS  Google Scholar 

  • Staplefeldt, H., Berrum, K. and Skibstead, L.H. (1997a) Ellman’s reagent for determination of the heat treatment of milk powder. Improved analytical procedure based on a stopped-flow kinetic study. Milchwissenschaft, 52, 146–9.

    Google Scholar 

  • Staplefeldt, H., Mortensen, G. and Skibstead, L.H. (1997b) Early events in oxidation of whole milk powder detected by electron spin resonance spectrometry. Carryover effects from butter oil used for instantisation. Milscwissenschaft, 52, 266–9.

    Google Scholar 

  • Staplefeldt, H., Nielsen, B.R., and Skibstead, L.H. (1997c) Effect of heat treatment, water activity and storage temperature on the oxidative stability of whole milk powder. Int. Dairy J., 7, 331–9.

    Article  Google Scholar 

  • Straatsma, J., van Houwelingen, G., Steenbergen, A.E. and de Jong, P. (1999) Spray drying of food products: 2. Prediction of insolubility index. J. Food Eng., 42, 73–7.

    Article  Google Scholar 

  • Swaisgood, S. (1992) The chemistry of caseins, in Advanced Dairy Chemistry 1-Proteins, 2nd edn, (P.F. Fox ed.) Elsevier Applied Science, London, pp. 63–110.

    Google Scholar 

  • Sweetsur, A.W.M. and Muir, D.D. (1980) Effect of concentration by ultrafiltration on the heat stability of skim-milk. J. Dairy Res., 47, 327–35.

    Article  Google Scholar 

  • Sweetsur, A.W.M. and Muir, D.D. (1981) Role of cyanate ions in the urea-induced stabilisation of the caseinate complex in skim-milk. J. Dairy Res., 48, 163–6.

    Article  CAS  Google Scholar 

  • Tan-Kintia, R. (1996) Heat-Induced Changes and the Heat Stability of Milk, PhD Thesis, National University of Ireland, Cork.

    Google Scholar 

  • Tan-Kintia, R. and Fox, P.F. (1999) Effect of various preheat treatments on the heat stability of unconcentrated milk. Int. Dairy J., 9, 219–25.

    Article  CAS  Google Scholar 

  • Teehan, C.C., Kelly, P.M., Devery, R. and O’Toole, A. (1997) Evaluation of test conditions during the measurement of coffee stability of instant whole milk powder. Int. J. Dairy Technol., 50, 113–21.

    Article  Google Scholar 

  • Teunnou, E., Fitzpatrick, J.J. and Synnott, E.C. (1999) Characterisation of food powder flowability. J. Food Eng., 39, 31–7.

    Article  Google Scholar 

  • Ulberth, F. and Roubicek, D. (1995) Monitoring of oxidative deterioration of milk powder by headspace gas chromatography. Int. Dairy J., 5, 523–31.

    Article  CAS  Google Scholar 

  • van Mil, P.J.J.M. and Jans, J.A. (1991) Storage stability of whole milk powder: effects of process and storage conditions on product properties. Neth. Milk Dairy J., 45, 145–67.

    Google Scholar 

  • van Renterghem, R. and de Block, J. (1996) Furosine in consumption milk and milk powders. Int. Dairy J., 6, 371–82.

    Article  Google Scholar 

  • Varnam, A.H. and Sutherland, J.P. (1994) Milk and Milk Products: Technology, Chemistry and Microbiology, Chapman and Hall, London.

    Book  Google Scholar 

  • Walstra, P. and Jenness, R. (1984) Dairy Chemistry and Physics, Wiley & Sons, New York.

    Google Scholar 

  • Walstra, P., Guerts, T.J., Noomen, A., Jellema, A. and van Boekel, M.A.J.S. (1999) Dairy Technology: Principles of Milk Properties and Processes, Marcel Dekker, Inc., New York.

    Google Scholar 

  • Warburton, S. and Pixton, S.W. (1978) The moisture relations of spray dried skimmed. J. Stored Prod. Res., 44, 143–53.

    Article  Google Scholar 

  • Warren, R.J. (1980) Packing and marketing of milk and whey powders, in Milk and Whey Powders, Society of Dairy Technology, Middlesex, UK, pp. 117–24.

    Google Scholar 

  • Westergaard, V. (1994) Milk Powder Technology: Evaporation and Spray Drying, Niro A/S, Copenhagen.

    Google Scholar 

  • Woodhams, D.J. and Murray, M.J. (1978) Properties of spray dried milk powders. N.Z. J. Dairy Sci. Technol., 13, 172–8.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kelly, A.L., O’Connell, J.E., Fox, P.F. (2003). Manufacture and Properties of Milk Powders. In: Fox, P.F., McSweeney, P.L.H. (eds) Advanced Dairy Chemistry—1 Proteins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8602-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8602-3_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47271-8

  • Online ISBN: 978-1-4419-8602-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics