Skip to main content

Heat-Induced Coagulation of Milk

  • Chapter
Advanced Dairy Chemistry—1 Proteins

Abstract

In this chapter, methods for assessing the heat stability of unconcentrated and concentrated milk are discussed. The effects of compositional factors, processing conditions and additives on the heat stability of milk are reviewed and the changes that occur on heating are considered in relation to the heat stability of milk. Three possible explanations for the pH-dependence and mechanism of thermal coagulation of milk, which incorporate the research on the heat stability of milk over the last century, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alais, C., Kiger, N. and Joliès, P. (1967) Action of heat on cowκ-casein. Heat caseino-glycopeptide. J. Dairy Sci., 50, 1738–43.

    Article  CAS  Google Scholar 

  • Allmere, T., Andrén, A., Lundén, A. and Björck, L. (1998) Interaction in heated skim milk between genetic variants of β-lactoglobulin andκ-casein. J. Agric. Food Chem., 46, 3004–8.

    Article  CAS  Google Scholar 

  • Anderson, L. and Kelley, J.J. (1959) The dephosphorylation of casein by alkalies. J. Am. Chem. Soc., 81, 2275–6.

    Article  CAS  Google Scholar 

  • Andersson, I. and Öste, R. (1995a) Sensory quality of UHT milk, in Heat-induced Changes in Milk, (P.F. Fox ed.) Special Issue 9501, International Dairy Federation, Brussels, pp. 279–301.

    Google Scholar 

  • Andersson, I. and Öste, R. (1995b) Nutritional quality of heat processed liquid milk, in Heat-induced Changes in Milk, (P.F. Fox ed.) Special Issue 9501, International Dairy Federation, Brussels, pp. 318–28.

    Google Scholar 

  • Andrews, A.T. (1975) Properties of aseptically packed ultra-high-temperature milk. III. Formation of polymerized protein during storage at various temperatures. J. Dairy Res., 42, 89–99.

    Article  CAS  Google Scholar 

  • Andrews, G.R. and Prasad, S.K. (1987) Effect of protein, citrate and phosphate content of milk on formation of lactulose during heat treatment. J. Dairy Res., 54, 207–18.

    Article  CAS  Google Scholar 

  • Anema, S.G. (1998) Effect of milk concentration on heat-induced, pH-dependent dissociation of casein from casein micelles in reconstituted skim milk at temperatures between 20 and 120°C. J. Agric. Food Chem., 46, 2299–305.

    Article  CAS  Google Scholar 

  • Anema, S.G. and Klostermeyer, H. (1996) ζ-Potential of casein micelles from reconstituted skim milk heated at 120°C. Int. Dairy J., 6, 673–87.

    Article  CAS  Google Scholar 

  • Anema, S.G. and Klostermeyer, H. (1997a) Heat-induced, pH-dependent dissociation of casein micelles on heating reconstituted skim milk at temperatures below 100°C. J. Agric. Food Chem., 45, 1108–15.

    Article  CAS  Google Scholar 

  • Anema, S.G. and Klosyermeyer, H. (1997b) The effect of pH and heat treatment on theκ-casein content and ζ potential of particles in reconstituted skim milk. Milchwissenschaft, 52, 217–23.

    CAS  Google Scholar 

  • Anema, S.G. and Stanley, D.J. (1998) Heat-induced, pH dependent behaviour of protein in caprine milk. Int. Dairy J., 8, 917–23.

    Article  CAS  Google Scholar 

  • Aoki, T. and Kako, Y. (1984) Effect of formaldehyde on the heat stability of concentrated milk and the formation of soluble casein. Agric. Biol. Chem., 48, 1017–21.

    Article  CAS  Google Scholar 

  • Aoki, T. and Kako, Y. (1985) The soluble and micellarκ-casein in heated concentrated whey protein-free milk. Jap. J. Zootech. Sci., 56, 347–52.

    CAS  Google Scholar 

  • Aoki, T., Hatanaka, C. and Imamura, T. (1977) Large casein micelles and soluble casein in heated concentrated whey protein-free milk. Agric. Biol. Chem., 41, 2349–55.

    Article  CAS  Google Scholar 

  • Aoki, T., Suzuki, H. and Imamura, T. (1974) Formation of soluble casein in whey protein-free milk heated at high temperature. Milchwissenchaft, 29, 589–94.

    CAS  Google Scholar 

  • Aoki, T., Suzuki, H. and Imamura, T. (1975) Some properties of soluble casein in heated concentrated whey protein-free milk. Milchwissenchaft, 30, 30–5.

    CAS  Google Scholar 

  • Aoki, T., Umeda, T. and Kako, Y. (1990) Cleavage of the linkage between colloidal calcium phosphate and casein on heating milk at high temperature. J. Dairy Res., 57, 349–54.

    Article  CAS  Google Scholar 

  • Aoki, T., Umeda, T. and Nakano, T. (1999) Effect of sodium chloride on the properties of casein micelles. Milchwissenschaft, 54, 91–3.

    CAS  Google Scholar 

  • Augustin, M.A. and Clarice, P.T. (1990) Effects of added salts on the heat stability of recombined concentrated milk. J. Dairy Res., 57, 213–26.

    Article  CAS  Google Scholar 

  • Auldist, M.J., Coats, S.T., Sutherland, B.J., Clarke, P.T., McDowell, G.H. and Rogers, G.L. (1996) Effect of somatic cell count and state of lactation on the quality of full cream milk powder. Aust. J. Dairy Technol., 51, 94–8.

    Google Scholar 

  • Baer, A., Oroz, M. and Blanc, B. (1976) Serological studies on heat-induced interaction of α-lactalbumin and milk proteins. J. Dairy Res., 43, 419–32.

    Article  CAS  Google Scholar 

  • Ball, C.O. (1955) Studies on high temperature sterilization of evaporated milk with emphasis on stability aspects. Food Res., 20, 351–70.

    Article  CAS  Google Scholar 

  • Banks, W., Clapperton, L.J., Muir, D.D., Powell, A.K. and Sweetsur, A.W.M. (1984) The effect of dietary-induced changes in milk urea levels on the heat stability of milk. J. Sci. Food Agric, 35, 165–72.

    Article  CAS  Google Scholar 

  • Beaulieu, M., Pouliot, Y. and Pouliot, M. (1999) Composition and microstructure of casein: whey protein aggregates formed by heating model solutions at 95°C. Int. Dairy J., 9, 393–4.

    Article  CAS  Google Scholar 

  • Belec, J. and Jenness, R. (1962a) Dephosphorization of casein by heat treatment. I. In caseinate solutions. J. Dairy Sci., 45, 12–9.

    Article  CAS  Google Scholar 

  • Belec, J. and Jenness, R. (1962b) Dephosphorization of casein by heat treatment. II. In skim milks. J. Dairy Sci., 45, 20–6.

    Article  CAS  Google Scholar 

  • Benten, A.G. (1929) Variations in the milk from different quarters of the same udder: Their significance in studies of coagulability. J. Dairy. Sci., 12, 481–3.

    Article  Google Scholar 

  • Berg, H.E. and van Boekel, M.A.J.S. (1994) Degradation of lactose during heating of milk. I. Reaction pathways. Neth. Milk Dairy J., 48, 157–75.

    CAS  Google Scholar 

  • Burton, H. (1956) A new approach to the problem of heat stability in evaporated milk. Proc. 14th Int. Dairy Congr. (Rome), 1, 342–9.

    CAS  Google Scholar 

  • Burton, H. (1984) Reviews in Progress of Dairy Science: The bacteriological, chemical, biochemical and physical changes that occur in milk at temperatures of 100-150°C. J. Dairy Res., 51, 341–63.

    Article  CAS  Google Scholar 

  • Calvo, M.M. and de la Hoz, L. (1992) Flavour of heated milks: a review. Int. Dairy J., 2, 69–81.

    Article  Google Scholar 

  • Cano-Ruiz, M.E. and Richter, R.L. (1997) Effect of homogenization pressure on the milk fat globule membrane. J. Dairy Sci., 80, 2732–9.

    Article  CAS  Google Scholar 

  • Carroll, R.J., Thompson, M.P. and Melnychyn, P. (1971) Gelation of concentrated skim milk: Electron microscopic study. J. Dairy Sci., 54, 1245–52.

    Article  CAS  Google Scholar 

  • Corredig, M. and Dalgleish, D.G. (1999) The mechanisms of heat-induced interaction of whey proteins with casein micelles in milk. Int. Dairy J., 9, 233–6.

    Article  Google Scholar 

  • Creamer, L.K. (1984) Fractionation of casein micelles and whey protein aggregates on Sephacryl S-1000. J. Chromat., 291, 460–3.

    Article  CAS  Google Scholar 

  • Creamer, L.K. and Matheson, A.R. (1980) Effect of heat treatment on the proteins of pasteurized skim milk. N.Z. J. Dairy Sci. Technol., 15, 37–49.

    CAS  Google Scholar 

  • Creamer, L.K., Berry, G.P. and Matheson, A.R. (1978) The effect of pH on protein aggregation in heated skim milk. N.Z. J. Dairy Sci. Technol., 13, 9–15.

    CAS  Google Scholar 

  • Dalgleish. D.G. (1990) Denaturation and aggregation of serum proteins and caseins in heated milk. J. Agric. Food Chem., 38, 1995–9.

    Article  CAS  Google Scholar 

  • Dalgleish, D.G., Pouliot, Y. and Paquin, P. (1987a) Studies on the heat stability of milk. I. Behaviour of divalent cations and phosphate in milk heated in a stainless steel system. J. Dairy Res., 54, 29–37.

    Article  CAS  Google Scholar 

  • Dalgleish, D.G., Pouliot, Y. and Paquin, P. (1987b) Studies on the heat stability of milk. II. Association and dissociation of particles and the effect of added urea. J. Dairy Res., 54, 39–49.

    Article  CAS  Google Scholar 

  • Darling, D.F. (1980) Heat stability of milk. J. Dairy Res., 47, 199–210.

    Article  Google Scholar 

  • Darling, D.F. and Dickson, J. (1979) The determination of the zeta potential of casein micelles. J. Dairy Res., 46, 329–32.

    Article  CAS  Google Scholar 

  • Davies, J.M. (1959) Decrease in the heat stability of milk on forewarming. Proc. 15th Int. Dairy Congr. (London), 3, 1859–64.

    Google Scholar 

  • Davies, D.T. and White, J.C.D. (1959) Determination of heat-induced changes in the protein stability and chemical composition of milk. Proc. 15th Int. Dairy Congr. (London), 3, 1677–85.

    CAS  Google Scholar 

  • Davies, D.T. and White, J.C.D. (1966) The stability of milk protein to heat I. Subjective measurement of heat stability of milk. J. Dairy Res., 33, 67–81.

    Article  Google Scholar 

  • de Koning, P.J., Koops, J. and van Rooijen, P.J. (1974) Some features of the heat stability of concentrated milk. III. Seasonal effects on the amounts of casein, individual whey proteins and NPN and their relation to variations in heat stability. Neth. Milk Dairy J., 28, 186–202.

    Google Scholar 

  • de Rafael, D., Villumiel, M. and Olano, A. (1997) Formation of lactulose and furosine during heat treatment of milk at temperatures 100-120°C. Milchwissenschaft, 52, 76–8.

    Google Scholar 

  • de Wit, J.N. (1981) Structure and functional behaviour of whey proteins. Neth. Milk Dairy J., 35, 47–64.

    Google Scholar 

  • de Wit, J.N., Klarenbeek, G. and de Graaf, C. (1986) Klaro-graph: a new approach for the measurement of the viscosity, density and heat stability in milk and milk concentrates at temperatures up to 140°C. Voedingsmiddelentechnologie, 6, 25–7.

    Google Scholar 

  • Doi, H., Ideno, S., Ibuki, F. and Kanamori, M. (1983) Participation of the hydrophobic bond in complex formation betweenκ-casein and β-lactoglobulin. Agric. Biol. Chem., 47, 407–9.

    Article  CAS  Google Scholar 

  • Zin El-Din, M. and Aoki, T. (1993) Polymerization of casein on heating milk. Int. Dairy J., 3, 581–8.

    Article  Google Scholar 

  • El-Negoumy, A.M. (1974) β-Lactoglobulin-K-casein interaction in various salt solutions. J. Dairy Sci., 57, 1302–8.

    Article  CAS  Google Scholar 

  • Ennis, M.P., Mahon, P. and Mulvihill, D.M. (2000) Heat-induced modification of rennet casein hydration behaviour. Irish. J. Agric. Food Res., 39, 133 (abstr).

    Google Scholar 

  • Fairise, J.-F., Cayot, P. and Lorient, D. (1999) Characterisation of the protein composition of casein micelles after heating. Int. Dairy J., 9, 249–54.

    Article  CAS  Google Scholar 

  • Farah, Z. and Atkins, D. (1992) Heat coagulation of camel milk J. Dairy Res., 59, 229–31.

    Article  Google Scholar 

  • Farkye, N.Y. and Imafidon, G.I. (1995) Thermal denaturation of milk enzymes, in Heat-induced Changes in Milk, (P.F. Fox ed.) Special Issue 9501, International Dairy Federation, Brussels, pp. 331–45.

    Google Scholar 

  • Feagan, J.T., Griffin, A.T. and Lloyd, G.T. (1966) Effects of subclinical mastitis on the heat stability of fluid milk. J. Dairy Sci., 49, 933–9.

    Article  CAS  Google Scholar 

  • Feagan, J.T., Bailey, L.F., Hehir, A.F., McLean, D.M. and Ellis, N.J.S. (1972) Coagulation of milk proteins. 1. Effect of genetic variants of milk proteins on rennet coagulation and heat stability of normal milk. Aust. J. Dairy Technol., 27, 129–34.

    CAS  Google Scholar 

  • Fink, R. and Kessler, H.G. (1988) Comparison of methods for distinguishing UHT-treatment and sterilization of milk. Milchwissenschaft, 43, 275–80.

    CAS  Google Scholar 

  • Foissy, H. and Kneifel, W. (1984) An automatic method for measuring the heat coagulation time of milk powder solutions. J. Dairy Res., 51, 325–9.

    Article  Google Scholar 

  • Fox, K.K., Harper, M.K., Holsinger, V.H. and Pallansch, M.J. (1967) Effect of high-heat treatment on stability of calcium casemate aggregates in milk. J. Dairy Sci., 50, 443–50.

    Article  CAS  Google Scholar 

  • Fox, P.F. (1981a) Heat stability of milk: significance of heat-induced acid formation in coagulation. Irish J. Food Sci. Technol., 5, 1–11.

    CAS  Google Scholar 

  • Fox, P.F. (1981b) Heat-induced changes in milk preceding coagulation. J. Dairy Sci., 64, 2127–37.

    Article  CAS  Google Scholar 

  • Fox, P.F. (1982) Heat-induced coagulation of milk in Developments in Dairy Chemistry-I. Proteins. (P.F. Fox ed.) Applied Science Publishers, London, pp. 189–228.

    Google Scholar 

  • Fox, P.F. and Hearn, C.M. (1978a) Heat stability of milk: influence of dilution and dialysis against water. J. Dairy Res., 45, 149–57.

    Article  CAS  Google Scholar 

  • Fox, P.F. and Hearn, C.M. (1978b) Heat stability of milk: influence of denaturable proteins and detergents on pH sensitivity. J. Dairy Res., 45, 159–72.

    Article  CAS  Google Scholar 

  • Fox, P.F. and Hearn, C.M. (1978c) Heat stability of milk: influence ofκ-casein hydrolysis. J. Dairy Res., 45, 173–81.

    Article  CAS  Google Scholar 

  • Fox, P.F. and Hoynes, M.C.T. (1975) Heat stability of milk: influence of colloidal calcium phosphate and β-lactoglobulin. J. Dairy Res., 42, 427–35.

    Article  CAS  Google Scholar 

  • Fox, P.F. and Hoynes, M.C.T. (1976) Heat stability characteristics of ovine, caprine and equine milk. J. Dairy Res., 43, 433–42.

    Article  CAS  Google Scholar 

  • Fox, P.F. and Morrissey, P.A. (1977) Reviews of the Progress of Dairy Science: The heat stability of milk. J. Dairy Res., 44, 627–46.

    Article  CAS  Google Scholar 

  • Fox, P.F. and Nash, B.M. (1979) Physico-chemical characteristics of casein micelles in dilute aqueous media J. Dairy Res., 46, 357–63.

    Article  CAS  Google Scholar 

  • Fox, P.F., Nash, B.M., Horan, T.J., O’Brien, J. and Morrissey, P.A. (1980) Effect of selected amides on heat-induced changes in milk. J. Dairy Res., 47, 211–9.

    Article  CAS  Google Scholar 

  • Frazier, W.C. (1925) The influence of some bacterial enzymes on the heat coagulation of milk. J. Dairy Sci., 8, 370–89.

    Article  CAS  Google Scholar 

  • Gallagher, D.P. and Mulvihill, D.M. (1997) Heat stability and renneting characteristics of milk systems containing bovine casein micelles and porcine or bovine β-lactoglobulin. Int. Dairy J., 7, 221–8.

    Article  CAS  Google Scholar 

  • Gallagher, D.P., Lucey, J.A. and Mulvihill, D.M. (1996) Heat stability characteristics of porcine milk and mixed porcine-bovine milk systems. Int. Dairy J., 6, 597–611.

    Article  CAS  Google Scholar 

  • Ganguli, N.C. (1979) Stability of buffalo casein micelles. J. Dairy Res., 46, 401–6.

    Article  CAS  Google Scholar 

  • Gaucheron, F., Mollé, D., Briard, V. and Léonil, J. (1999) Identification of low molecular weight peptides released during sterilization of milk. Int. Dairy J., 9, 515–21.

    Article  CAS  Google Scholar 

  • Geerts, J.P., Bekhof, J.J. and Scherjon, J.W. (1983) Determination of calcium ion activities in milk with an ion-selective electrode. A linear relationship between the logarithm of time and the recovery of the calcium ion activity after heat treatment. Neth. Milk Dairy J., 37, 197–211.

    CAS  Google Scholar 

  • Ghatak, P.K., Bandyopadhyay, A.K. and Gupta, M.P. (1990) Influence of chilling treatment on heat stability and proteolysis of cow milk. Asian J. Dairy Res., 9, 231–4.

    Google Scholar 

  • Ghatak, P.K., Bandyopadhyay, A.K. and Gupta, M.P. (1989) The relation between the heat stability of milk and its chemical composition. Asian J. Dairy Res., 8, 165–8.

    CAS  Google Scholar 

  • Ghatak, P.K., Singh, A., Bhavadasan, M.K. and Ganguli, N.C. (1980) The effect of the addition of aldehydes or sugars on the heat stability of buffalo milk. N.Z. J. Dairy Sci. Technol., 15, 159–65.

    CAS  Google Scholar 

  • Guo, M., Fox, P.F., Flynn, A. and Mohammad, K.S. (1989) Heat-induced changes in sodium caseinate. J. Dairy Res., 56, 503–12.

    Article  Google Scholar 

  • Griffin, A.T., Hickey, M.W., Bailey, L.F. and Feagan, J.T. (1976) The significance of preheat and pH adjustment in the manufacture of recombined evaporated milk. Aust. J. Dairy Technol., 31, 134–7.

    Google Scholar 

  • Hammersten, O. (1874) Uber den Chemischen Verlauf bein der Gerinnung des Caseins mit Lab. Jahres-Bericht über die Fortschnitte Der Thier-Chemie, 4, 135–54. [cited from McCrae and Muir, 1995].

    Google Scholar 

  • Haque, Z. and Kinsella, J.E. (1988) Interaction between heatedκ-casein and β-lactoglobulin: predominance of hydrophobic interactions in the initial stages of complex formation. J. Dairy Res., 55, 67–80.

    Article  CAS  Google Scholar 

  • Haque, Z., Kristjansson, M.M. and Kinsella, J.E. (1987) Interaction betweenκ-casein and β-lactoglobulin: possible mechanism. J. Agric. Food Chem., 35, 644–9.

    Article  CAS  Google Scholar 

  • Hardy, E.E., Muir, D.D., Sweetsur, A.W.M. and West, I.G. (1984) Changes of calcium phosphate partition and heat stability during manufacture of sterilized concentrated milk. J. Dairy Sci., 67, 1666–73.

    Article  CAS  Google Scholar 

  • Hardy, E.E., Sweetsur, A.W.M., West, I.G. and Muir, D.D. (1985) Heat stability of concentrated milk: enhancement of initial heat stability by incorporation of food grade lecithin. J. Food Technol., 20, 97–105.

    Article  CAS  Google Scholar 

  • Hardy-Lloyd, E.E., Sweetsur, A.W.M., West, I.G. and Muir, D.D. (1986) Preparation and properties of sterilized concentrated milk incorporating lecithin. Milchwissenschaft, 41, 470–3.

    CAS  Google Scholar 

  • Hartman, G.H. (1967) Heat treatment of mixtures of β-lactoglobulin andκ-casein. Diss. Abstr., 28, 474.

    Google Scholar 

  • Harwalkar, V.R., Allan-Wojtas, P. and Kaláb, M. (1989) Effect of heating to 200°C on casein micelles in milk: a metal shadowing and negative staining electron microscope study. Food Microstructure, 8, 217–24.

    Google Scholar 

  • Heeschen, W. (1996) Influence of mastitis on quality and hygienic characteristics of milk. Praktische-Tierarzt, 77, 223–6. (cited from CAB Abstr. 96040996).

    Google Scholar 

  • Henle, T., Walter, A.W. and Klostermeyer, H. (1993) Detection and identification of the crosslinking amino acids Nπ and Nπ-(2′-amino-2′-carboxy-ethyl)-L-histidine (“Histidinoalanine”, HAL) in heated milk products, Z. Lebensm. Unters. Forsch., 197, 114–7.

    Article  CAS  Google Scholar 

  • Hennart, P.F., Brasseur, D.J., Delogne-Desnoeck, J.B., Dramaix, M.M. and Robyn, CE. (1991) Lysozyme, lactoferrin and secretory immunoglobulin A content in breast milk: Influence of duration of lactation, nutrition status, prolactin status and parity of mother. Amer. J. Clin. Nut., 53, 32–39.

    CAS  Google Scholar 

  • Hindle, E J. and Wheelock, J.V. (1970) The release of peptides and glycopeptides by the action of heat on cow’s milk. J. Dairy Res., 37, 397–405.

    Article  CAS  Google Scholar 

  • Hinrichs, J. and Kessler, H.G. (1995) Thermal processing of milk-processes and equipment, in Heat-induced Changes in Milk, (P.P. Fox ed.) Special Issue 9501, International Dairy Federation, Brussels, pp. 8–21.

    Google Scholar 

  • Holt, C. (1992) Structure and stability of bovine casein micelles. Adv. Protein Chem., 43, 63–151.

    Article  CAS  Google Scholar 

  • Holt, C., Muir, D.D. and Sweetsur, A.W.M. (1978a) Seasonal changes in the heat stability of milk from creamery silos in South-West Scotland. J. Dairy Res., 45, 183–90.

    Article  CAS  Google Scholar 

  • Holt, C., Muir, D.D. and Sweetsur, A.W.M. (1978b) The heat stability of milk and concentrated milk containing added aldehydes and sugars. J. Dairy Res., 45, 47–52.

    Article  CAS  Google Scholar 

  • Home, D.S. (1983) Calcium-induced precipitation of αs1-casein: Effect of modification of lysine residues. Int. J. Biol. Macromol., 5, 296–300.

    Article  Google Scholar 

  • Home, D.S. (1992) Ethanol stability, in Advanced Dairy Chemistry-1: Proteins, (P.F. Fox ed.) Elsevier Applied Science, London, pp. 657–90.

    Google Scholar 

  • Home, D.S. and Muir, D.D. (1990) Alcohol and heat stability of milk protein. J. Dairy Sci., 73, 3613–26.

    Article  Google Scholar 

  • Howat, G.R. and Wright, N.C. (1934) The heat coagulation of caseinogen. I. The role of phosphorus cleavage. Biochem. J., 28, 1336–45.

    CAS  Google Scholar 

  • Hoynes, M.C.T. and Fox, P.F. (1975) Some physico-chemical properties of porcine milk. J. Dairy Res., 42, 43–56.

    Article  CAS  Google Scholar 

  • Hustinx, J.C.A., Singh, T.K. and Fox, P.F. (1997) Heat-induced hydrolysis of sodium caseinate. Int. Dairy J., 7, 207–12.

    Article  CAS  Google Scholar 

  • Hyslop, D.B. and Fox, P.F. (1981) Heat stability of milk: interrelationship between assay temperature, pH and agitation. J. Dairy Res., 48, 123–9.

    Article  CAS  Google Scholar 

  • Ibrahim, E.M., Mohan, M.A. and Hanafy, N.E. (1990) Physico-chemical characteristics of colostrum and the influence of its addition to some technological properties of normal milk. Assiut J. Agric. Sci., 21, 221–39.

    Google Scholar 

  • Jang, H.D. and Swaisgood, H.E. (1990) Disulphide bond formation between thermally denatured β-lactoglobulin andκ-casein in casein micelles. J. Dairy Sci., 73, 900–4.

    Article  CAS  Google Scholar 

  • Jeurnink, T.J.M. (1991) Effect of proteolysis in milk on fouling in heat exchangers. Neth. Milk Dairy J., 45, 23–32.

    CAS  Google Scholar 

  • Jeurnink, T.J.M. (1992) Changes in milk on mild heating: turbidity measurements. Neth. Milk Dairy J., 46, 183–96.

    CAS  Google Scholar 

  • Jeurnink, T.J.M. and de Kruif, K.G. (1995) Calcium concentration in milk in relation to heat stability and fouling. Neth. Milk Dairy J., 49, 151–65.

    CAS  Google Scholar 

  • Kella, N.K.D. and Kinsella, J.E. (1988) Structural stability of β-lactoglobulin in the presence of kosmotropic salts. Int. J. Peptide Protein Res., 32, 396–405.

    Article  CAS  Google Scholar 

  • Kelly, P.M. (1982) The effect of preheat temperature and urea addition on the seasonal variation in the heat stability of skim milk powder. J. Dairy Res., 49, 187–96.

    Article  CAS  Google Scholar 

  • Kelly, P.M., O’Keeffe, A.M., Keogh, M.K. and Phelan, J.A. (1982) Studies of milk composition and its relationship to some processing criteria. III: Seasonal variation in heat stability of milk. Irish J. Food Sci. Technol., 6, 29–38.

    Google Scholar 

  • Kessler, H.G. and Fink, R. (1986) Changes in heated and stored milk with an interpretation by reaction kinetics. J. Food Sci., 51, 1105–11.

    Article  CAS  Google Scholar 

  • Kieseker, F.G. and Aitken, B. (1988) An objective method for determination of heat stability of milk powders. Aust. J. Dairy Technol., 43, 26–31.

    Google Scholar 

  • Kitabatake, N., Cuq, J.L. and Cheftel, J.C. (1985) Covalent binding of glycosyl residues to β-lactoglobulin: effects on solubility and heat stability. J. Agric. Food Chem., 33, 125–30.

    Article  CAS  Google Scholar 

  • Klostermeyer, H. and Reimerdes, E.H. (1977) Heat-induced crosslinks in milk proteins and consequences for the milk system, in Advances in Experimental Medicine and Biology, Vol 86 B: Protein Crosslinking, (M. Friedman ed.) Plenum Press, New York, pp. 263–76.

    Chapter  Google Scholar 

  • Koops, J. and Westerbeek, D. (1970) Some features of the heat stability of concentrated milk. II. Effect of hydrogen peroxide. Neth. Milk Dairy J., 24, 52–60.

    CAS  Google Scholar 

  • Kresheck, G.C., van Winkle, Q. and Gould, L.A. (1964) Physical changes in milk proteins at elevated temperatures as determined by light scattering. I. Casein fractions. J. Dairy Sci., 47, 117–25.

    Article  CAS  Google Scholar 

  • Kudo, S. (1980a) Influence of lactose and urea on the heat stability of artificial milk systems. N.Z. J. Dairy Sci. Technol., 15, 197–200.

    CAS  Google Scholar 

  • Kudo, S. (1980b) The influence of αs1-casein on the heat stability of artificial milks. N.Z. J. Dairy Sci. Technol., 15, 245–54.

    CAS  Google Scholar 

  • Kudo, S. (1980c) The heat stability of milk: Formation of soluble proteins and protein-depleted micelles at elevated temperatures. N.Z. J. Dairy Sci. Technol., 15, 255–63.

    CAS  Google Scholar 

  • Law, A.J.R. and Leaver, J. (1999) Factors affecting the heat denaturation of whey proteins in cow’s milk. Int. Dairy J., 9, 407–8.

    Article  CAS  Google Scholar 

  • Leighton, A. and Deysher, E.R. (1923) Factors influencing the heat coagulation of milk and the thickening of condensed milk. Proc. World’s Dairy Congr., 2, 1276–84. [cited from Singh and Creamer, 1992].

    Google Scholar 

  • Leonil, J., Molle, D., Fauquant, J., Maubois, J.L., Pearse, R.J. and Bouhallab, S. (1997) Characterisation by ionisation mass spectroscopy of lactosyl β-lactoglobulin conjugates formed during heat treatment of milk and whey and identification of one lactose-binding site. J. Dairy Sci., 80, 2270–81.

    Article  CAS  Google Scholar 

  • Lodes, A., Krause, I., Buchberger, J., Aumann, J. and Klostermeyer, H. (1996) The influence of genetic variants of milk proteins on the compositional and technological properties of milk. 1. Casein micelle size and content of non-glycosylatedκ-casein. Milchwissenchaft, 51, 368–73.

    CAS  Google Scholar 

  • Long, J.E., van Winkle, Q. and Gould, I.A. (1963) Heat-induced interaction between crudeκ-casein and β-lactoglobulin. J. Dairy Sci., 46, 1329–34.

    Article  CAS  Google Scholar 

  • Lorient, D. (1979) Covalent bonds formed in proteins during milk sterilization: studies on caseins and casein peptides. J. Dairy Res., 46, 393–6.

    Article  CAS  Google Scholar 

  • Manson, W. and Carolan, T. (1980) Formation of lysinoalanine from individual bovine caseins. J. Dairy Res., 47, 193–8.

    Article  CAS  Google Scholar 

  • Manson, W., Carolan, J. and Annan, W.D. (1985) Products of heat-promoted reaction between urea and the protein fraction of bovine milk. J. Dairy Res., 52, 401–7.

    Article  CAS  Google Scholar 

  • McCrae, C.H. (1999) Heat stability of milk emulsions: phospholipid-protein interactions. Int. Dairy J., 9, 227–31.

    Article  CAS  Google Scholar 

  • McCrae, C.H. and Muir, D.D. (1992) The influence of phospholipid classes of crude lecithin on the heat stability of recombined milk. Milchwissenschaft, 47, 755–9.

    CAS  Google Scholar 

  • McCrae, C.H. and Muir, D.D. (1995) Heat stability of milk, in Heat-induced Changes in Milk, (PF. Fox ed.) Special Issue 9501, International Dairy Federation, Brussels, pp. 206–30.

    Google Scholar 

  • McCrae, C.H., Hirst, D., Law, A.J.R. and Muir, D.D. (1994) The heat stability of homogenised milk: role of interfacial protein. J. Dairy Res., 61, 507–16.

    Article  CAS  Google Scholar 

  • McGann, T.C.A., Donnelly, W.J., Kearney, R.D. and Buchheim, W. (1980) Composition and size distribution of bovine casein micelles. Biochim. Biophys. Acta, 630, 261–70.

    Article  CAS  Google Scholar 

  • McLean, D.M. and McKenzie, H.A. (1978) Heat stability of milk from several species. Proc. 20th Int. Dairy Congr. (Paris), p. 247 (abstr).

    Google Scholar 

  • McLean, D.M., Graham. E.R.B., Ponzoni, R.W. and McKenzie, H.A. (1987) Effects of milk protein genetic variants and composition on heat stability of milk. J. Dairy Res., 54, 219–35.

    Article  CAS  Google Scholar 

  • Meisel, H. and Schlimme, E. (1995) Casein-bound phosphorus and contents of free amino acids in milk subjected to different heat treatments. Kieler Milchwirtschaftliche Forschungsberichte, 47, 289–95.

    CAS  Google Scholar 

  • Metwalli, A.A.M. and van Boekel, M.A.J.S. (1995) Effect of formaldehyde on heat stability of milk. Neth. Milk Dairy J., 49, 177–89.

    CAS  Google Scholar 

  • Metwalli, A.A.M. and van Boekel, M.A.J.S. (1996) Effect of urea on the heat coagulation of milk. Neth. Milk Dairy J., 50, 459–76.

    CAS  Google Scholar 

  • Metwalli, A.A.M. and van Boekel, M.A.J.S. (1998) On the kinetics of heat-induced deamidation and breakdown of caseinate. Food Chem., 61, 53–61.

    Article  CAS  Google Scholar 

  • Metwalli, A.A.M., Lammers, W.L. and van Boekel, M.A.J.S. (1998) Formation of homocitrulline during heating of milk. J. Dairy Res., 65, 579–89.

    Article  CAS  Google Scholar 

  • Metwalli, A.A.M., Metwalli, N.H. and van Boekel, M.A.J.S. (1996) Effect of urea on heat-induced changes in milk. Neth. Milk Dairy J., 50, 427–57.

    CAS  Google Scholar 

  • Miller, P.G. and Sommer, H.H (1940) The coagulation temperature of milk as affected by pH, salts, evaporation and previous heat treatment J. Dairy Sci., 23, 405–21.

    Article  CAS  Google Scholar 

  • Minkiewicz, P., Dziuba, J. and Muzinska, B. (1993) The contribution of N-acetlyneuraminic acid in the stabilization of micellar casein. Polish J. Food Nut. Sci., 2, 39–48.

    CAS  Google Scholar 

  • Mohammad, K.S. (1985) Heat-induced Changes in Micellar and Soluble Casein, PhD thesis, National University of Ireland, Cork.

    Google Scholar 

  • Mohammad, K.S. and Fox, P.F. (1983) Influence of some polyvalent organic acids and salts on the colloidal stability of milk. J. Soc. Dairy Technol., 36, 112–7.

    Article  CAS  Google Scholar 

  • Mohammad, K.S. and Fox, P.F. (1986) Heat and alcohol-induced coagulation of casein micelles. Irish J. Food Sci. Technol., 10, 47–55.

    Google Scholar 

  • Mohammad, K.S. and Fox, P.F. (1987a) Heat-induced microstructural changes in casein micelles before and after heat coagulation. N.Z. J. Dairy Sci. Technol., 22, 191–203.

    CAS  Google Scholar 

  • Mohammad, K.S. and Fox, P.F. (1987b) Heat-induced association-dissociation of casein micelles preceding coagulation. J. Dairy Res., 54, 377–87.

    Article  CAS  Google Scholar 

  • Montilla, A. and Calvo, M.M. (1997) Goat’s milk stability during heat treatment: Effect of pH and phosphates. J. Agric. Food Chem., 45, 931–4.

    Article  CAS  Google Scholar 

  • Morales, F.J. and Jiménez-Pérez, S. (1998) Monitoring of heat-induced proteolysis in milk and milk resembling systems. J. Agric. Food Chem., 46, 4391–7.

    Article  CAS  Google Scholar 

  • Morales, F.J., Romero, C. and Jiménez-Pérez, S. (1995) New methodologies for the kinetic study of 5-(hydroxymethyl) furfural formation and reactive lysine blockage in heat-treated milk and model systems. J. Food Prot., 58, 310–5.

    CAS  Google Scholar 

  • Morales, F.J., Romero, C. and Jiménez-Pérez, S. (1996) Fluoresence associated with Maillard reaction in milk and milk resembling systems. Food Chem., 57, 423–8.

    Article  CAS  Google Scholar 

  • Morr, C.V. (1973) Milk ultracentrifugal opalescent layer 2: Physico-chemical properties. J. Dairy Sci., 56, 1258–66.

    Article  CAS  Google Scholar 

  • Morr, C.V., Harper, N.J. and Gould, I.A. (1957) Some organic acids in raw and heated milk. J. Dairy Sci., 40, 964–72.

    Article  CAS  Google Scholar 

  • Morrissey, P.A. (1969) The heat stability of milk as affected by variations in pH and milk salts. J. Dairy Res., 36, 343–51.

    Article  CAS  Google Scholar 

  • Morrissey, P.A. and O’Mahony, F. (1976) Heat stability of forewarmed milks: Influence ofκ-casein, serum proteins and divalent cations. J. Dairy Res., 43, 267–74.

    Article  CAS  Google Scholar 

  • Morrissey, P.A., Murphy, M.F., Hearn, C.M. and Fox, P.F. (1981) Composition and stability of mid-lactation milks. Irish J. Food Sci. Technol., 5, 117–27.

    CAS  Google Scholar 

  • Mousa, S.M. and Ibrahim, E.M. (1991) Effect of urea addition to dairy cattle rations with low protein contents on milk yield, composition and some technological properties. Assiut J. Agric. Sci., 23, 179–96.

    Google Scholar 

  • Muir, D.D. (1985) Heat stability of milk and concentrated milk. Int. J. Biochem., 17, 291–9.

    Article  CAS  Google Scholar 

  • Muir, D.D. and Sweetsur, A.W.M. (1976) The influence of naturally occurring levels of urea on the heat stability of bulk milk J. Dairy Res., 43, 495–9.

    Article  CAS  Google Scholar 

  • Muir, D.D. and Sweetsur, A.W.M. (1977) Effect of urea on the heat coagulation of the caseinate complex in skim milk. J. Dairy Res., 44, 249–57.

    Article  CAS  Google Scholar 

  • Muir, D.D. and Sweetsur, A.W.M. (1978) The effect of concentration on the heat stability of skim milk. J. Dairy Res., 45, 37–45.

    Article  CAS  Google Scholar 

  • Muir, D.D. and Sweetsur, A.W.M. (1984) Optimization of the heat stability of protein-rich concentrates prepared by ultrafiltration of skim-milk. J. Food Technol., 19, 263–71.

    Article  CAS  Google Scholar 

  • Muir, D.D. and Sweetsur, A.W.M. (1992a) Production and properties of in-can sterilised concentrated milk with 39% solids: seasonal effects. Milchwissenschaft, 47, 8–11.

    Google Scholar 

  • Muir, D.D. and Sweetsur, A.W.M. (1992b) Production and properties of in-can sterilised concentrated milk with 39% solids: process optimisation. Milchwissenschaft, 47, 80–3.

    Google Scholar 

  • Muir, D.D., Abbot, J. and Sweetsur, A.W.M. (1978) Changes in the heat stability of milk protein during the manufacture of dried skim-milk. J. Food Technol., 13, 45–53.

    Article  CAS  Google Scholar 

  • Muir, D.D., Sweetsur, A.W.M. and Holt, C. (1979) The synergic effect of urea and aldehydes on the heat stability of concentrated skim-milk. J. Dairy Res., 46, 381–4.

    Article  CAS  Google Scholar 

  • Muir, D.D., Home, D.S., Law, A.J.R. and Sweetsur, A.W.M. (1993) Ovine milk. 2. Seasonal changes in indices of stability. Milchwissenschaft, 48, 442–5.

    Google Scholar 

  • Nelson, V. (1954) The effects of formaldehyde and copper salts on the heat stability of evaporated milk. J. Dairy Sci., 37, 825–9.

    Article  CAS  Google Scholar 

  • Newstead, D.F. (1977) Effect of protein and salt concentration on the heat stability of evaporated milk. N.Z. J. Dairy Sci. Technol., 12, 171–5.

    CAS  Google Scholar 

  • Newstead, D.F. and Baucke, A.G. (1983) Heat stability of recombined evaporated milk and reconstituted concentrated skim milk. Effects of temperature and time of preheating. N.Z. J. Dairy Sci. Technol., 18, 1–11.

    Google Scholar 

  • Newstead, D.F., Conaghan, E.F. and Sanderson, W.B. (1976) Effects of whey protein concentration on the heat stability of evaporated milk. N.Z. J. Dairy Sci. Technol., 11, 223–30.

    CAS  Google Scholar 

  • Newstead, D.F., Conaghan, E.F. and Baldwin, A.J. (1979) Studies on the induction of heat stability in evaporated milk by preheating: Effects of milk concentration, homogenization and whey proteins. J. Dairy Res., 46, 387–91.

    Article  CAS  Google Scholar 

  • Newstead, D.F., Sanderson. W.R. and Baucke, A.G. (1975) The effect of heat treatment and pH on the heat stability of recombined evaporated milk. N.Z. J. Dairy Sci. Technol., 10, 113–8.

    Google Scholar 

  • Newstead, D.F., Sanderson, W.B. and Conaghan, E.F. (1977) Effects of whey protein concentrations and heat treatment on the heat stability of concentrated and unconcentrated milk. N.Z J. Dairy Sci. Technol., 12, 29–36.

    CAS  Google Scholar 

  • Nieuwenhuijse, J.A., Timmermans, W. and Walstra, P. (1988) Calcium and phosphate partitions during the manufacture of sterilized concentrated milk and their relations to the heat stability. Neth. Milk Dairy J., 42, 387–421.

    CAS  Google Scholar 

  • Nieuwenhuijse, J.A., Sjollema, A., van Boekel, M.A.J.S., van Vliet, T. and Walstra, P. (1991) The heat stability of concentrated milk. Neth. Milk Dairy J., 45, 193–224.

    Google Scholar 

  • Noh, B. and Richardson, T. (1989) Incorporation of radiolabelled whey proteins into the casein micelles by heat processing. J. Dairy Sci., 72, 1724–31.

    Article  CAS  Google Scholar 

  • Noh, B., Creamer, L.K. and Richardson, T. (1989a) Thermally induced complex formation in an artificial milk system J. Agric. Food Chem., 37, 1395–400.

    Article  CAS  Google Scholar 

  • Noh, B., Richardson T. and Creamer, L.K. (1989b) Radiolabelling study of the heat-induced interactions between α-lactalbumin, β-lactoglobulin andκ-casein in milk and in buffer solutions. J. Food Sci., 54, 889–93.

    Article  CAS  Google Scholar 

  • Nursten, H.E. (1981) Recent developments in studies of the Maillard reaction. Food Chem., 6, 263–77.

    Article  CAS  Google Scholar 

  • Nursten, H.E. (1995) Heat-induced changes in the flavour of milk, in Heat-induced Changes in Milk, (P.F. Fox ed.) Special Issue 9501, International Dairy Federation, Brussels, pp. 308–15.

    Google Scholar 

  • O’Brien, J. (1995) Heat-induced changes in lactose: isomerization, degradation, Maillard reaction, in Heat-induced Changes in Milk, (P.F. Fox ed.) Special Issue 9501, International Dairy Federation, Brussels, pp. 134–62.

    Google Scholar 

  • O’Connell, J.E. and Fox, P.F. (1999a) Effect of extracts of oak (Quercus petraea) bark, oak leaves, aloe vera (Curacao aloe), coconut shell and wine on the colloidal stability of milk and concentrated milk. Food Chem., 66, 93–6.

    Article  CAS  Google Scholar 

  • O’Connell, J.E. and Fox, P.F. (1999b) Effect of phenolic compounds on the heat stability of milk and concentrated milk. J. Dairy Res., 66, 399–407.

    Article  CAS  Google Scholar 

  • O’Connell, J.E. and Fox, P.F (1999c) Proposed mechanism for the effect of polyphenols on the heat stability of milk. Int. Dairy J., 9, 523–30.

    Article  CAS  Google Scholar 

  • O’Connell, J.E. and Fox, P.F. (2000a) The two-stage coagulation of milk proteins in the minimum of the heat coagulation time-pH profile of milk: effect of casein micelle size. J. Dairy Sci., 83, 378–86.

    Article  CAS  Google Scholar 

  • O’Connell, J.E. and Fox, P.F. (2000b) Heat-induced changes in the calcium sensitivity of caseins. Int. Dairy J., 9, 839–47.

    Article  Google Scholar 

  • O’Connell, J.E. and Fox. P.F. (2000c) The heat stability of buttermilk. J. Dairy Sci., 83, 1728–32.

    Article  CAS  Google Scholar 

  • O’Connell, J.E., Fox, P.D., Tan-Kintia, R. and Fox, P.F. (1998) Effect of extracts of tea, coffee and cocoa on the colloidal stability of milk Int. Dairy J., 8, 689–93.

    Article  Google Scholar 

  • Okonogi, S. and Tomita, M. (1977) Effect of pH on the heat stability of skim-milk subjected to demineralization by means of electrodialysis with ion permselective membranes. Jap. J. Zootech. Sci., 48, 437–8.

    CAS  Google Scholar 

  • Olano, A. and Calvo, M.M. (1989) Kinetics of lactulose, galactose and epilactose formation during heat treatment of milk. Food Chem., 34, 239–48.

    Article  CAS  Google Scholar 

  • Ono, T., Yoshida, M., Tanaami, H. and Ohkosi, H. (1999) Changes in the casein micelle size induced by heating. Int. Dairy J., 9, 405–6.

    Article  CAS  Google Scholar 

  • O’Reilly, M. and Kelly, P.M. (1982) Heat induced urea interaction and their heat stabilizing effects in milk. Irish J. Food Sci. Technol., 6, 202 (abstr).

    Google Scholar 

  • Otterbum, M.S., Healy, M. and Sinclair, W. (1977) The formation, isolation and importance of isopeptides in heated proteins, in Advances in Experimental Medicine and Biology, Vol 86 B: Protein Crosslinking, (M. Friedman ed.) Plenum Press, New York, pp. 239–62.

    Chapter  Google Scholar 

  • Pappas, C.P. (1992) Interactions between milk proteins: Influence of heat, calcium and lactose. 1. Interactions between (I) whole casein and β-lactoglobulin and (II) κ-casein and β-lactoglobulin. Lebensm. Wiss. u. Technol., 25, 102–12.

    CAS  Google Scholar 

  • Pappas, C.P. and Rothwell, J. (1991) The effect of heating, alone or in the presence of calcium or lactose, on the calcium binding to milk proteins. Food Chem., 42, 183–201.

    Article  CAS  Google Scholar 

  • Parker, T.G. and Dalgleish, D.G. (1977) The theory of branching process applied to milk proteins. J. Dairy Res., 44, 85–92.

    Article  Google Scholar 

  • Paterson, G.R., MacGribbon, A.K.H. and Hill, J.P. (1999) Influence ofκ-casein and β-lactoglobulin phenotype on the heat stability of milk. Int. Dairy J., 9, 375–6.

    Article  CAS  Google Scholar 

  • Pauletti, M.S., Castelao, E.L. and Sequro, E. (1996) Kinetics of heat coagulation of concentrated milk proteins containing high sucrose contents. J. Food Sci., 61, 1207–10.

    Article  CAS  Google Scholar 

  • Pearce, R.J. (1979) Heat stability in concentrated and non-concentrated milks: the effect of urea and β-lactoglobulin levels and the influence of preheating. J. Dairy Res., 46, 385–6.

    Article  CAS  Google Scholar 

  • Pellegrino, L., Resmini, P. and Luf, W. (1995) Assessment (indices) of heat treatment of milk, in Heat-induced Changes in Milk, (P.F. Fox ed.) Special Issue 9501, International Dairy Federation, Brussels, pp. 419–53.

    Google Scholar 

  • Pellegrino, L., van Boekel, M.A.J.S., Gruppen, H., Resmini, P. and Pagani, M.A. (1999) Heat-induced aggregation and covalent linkages in β-casein model systems. Int. Dairy J., 9, 255–60.

    Article  CAS  Google Scholar 

  • Pepper, L. and Thompson, M.P. (1963) Dephosphorylation of αs-andκ-caseins and its effect on micelle stability in theκ-αs-casein system. J. Dairy Sci., 46, 764–7.

    Article  CAS  Google Scholar 

  • Peter, S., Rattray, W. and Jelen, P. (1996) Heat stability and sensory quality of protein standardized 2% fat milk. Milchwissenschaft, 51, 611–6.

    CAS  Google Scholar 

  • Pouliot, Y. and Boulet, M. (1995) Observations on the seasonal variations in the salt balance of concentrated milk. Int. Dairy J., 5, 75–85.

    Article  Google Scholar 

  • Prasad, C. and Balachasandran, R. (1987) Effect of chemical additives on the pH and heat stability of buffalo milk at different concentrations. N.Z. J. Dairy Sci. Technol., 22, 123–30.

    CAS  Google Scholar 

  • Pyne, G.T. (1958) The heat coagulation of milk. II. Variations in sensitivity of casein to calcium ions. J. Dairy Res., 25, 467–74.

    Article  CAS  Google Scholar 

  • Rajput, Y.S., Bhavadasan, M.K. and Ganguli, N.C. (1984a) Effect of urea on heat-induced acidity and milk coagulation. N.Z. J. Dairy Sci. Technol., 19, 49–54.

    CAS  Google Scholar 

  • Rajput, Y.S., Bhavadasan, M.K. and Ganguli, N.C. (1984b) Influence of amino acids on heat stability of milk. Milchwissenschaft, 39, 598–600.

    CAS  Google Scholar 

  • Ram, M. and Joshi, V.K. (1990) Heat stability of milk as affected by proteose peptone components during cold storage. Indian J. Dairy Sci., 43, 217–9.

    Google Scholar 

  • Ramsdell, G.A., Johnson, W.T. and Evans, F.R. (1931) A test for the detection of a milk unstable to heat. J. Dairy Sci., 14, 93–106.

    Article  CAS  Google Scholar 

  • Rattray, W. and Jelen, P. (1996) Thermal stability of skim milk with protein content standardized by the addition of ultrafiltration permeate. Int. Dairy J., 6, 157–70.

    Article  CAS  Google Scholar 

  • Recio, I., Amigo, L. and López-Fandino, R. (1997) Assessment of the quality of dairy products by capillary electrophoresis of milk proteins. J. Chrom. B, 697, 231–42.

    Article  CAS  Google Scholar 

  • Relkin, P. (1996) Thermal unfolding of β-lactoglobulin, tx-lactalbumin and bovine serum albumin. A thermodynamic approach. CRC Crit. Rev. Food Sci. Nut., 36, 565–601.

    Article  CAS  Google Scholar 

  • Robertson, N.H. and Dixon, A. (1969) The nitrogen fractions and heat stability of bovine milk. Agroanimnalia, 1, 141–4.

    CAS  Google Scholar 

  • Robitaille, G. (1995) Influence ofκ-casein and β-lactoglobulin genetic variants on the heat stability of milk. J. Dairy Res., 62, 593–600.

    Article  CAS  Google Scholar 

  • Robitaille, G. and Ayers, C. (1995) Effects ofκ-casein glycosylation on the heat stability of milk. Food Res. Int., 28, 17–21.

    Article  CAS  Google Scholar 

  • Rose, D. (1961a) Variations in the heat stability and composition of milk from individual cows during lactation. J. Dairy Sci., 44, 430–41.

    Article  CAS  Google Scholar 

  • Rose, D. (1961b) Factors affecting the pH-sensitivity of the heat stability of milk from individual cows. J. Dairy Sci., 44, 1405–13.

    Article  CAS  Google Scholar 

  • Rose, D. (1961c) β-Lactoglobulin and pH-sensitivity of the heat stability of evaporated milk. J. Dairy Sci., 44, 1763.

    Article  CAS  Google Scholar 

  • Rose, D. (1962) Factors affecting the heat stability of milk. J. Dairy Sci., 45, 1305–11.

    Article  CAS  Google Scholar 

  • Rose, D. (1963) Heat stability of bovine milk: a review. Dairy Sci. Abstr., 25, 45–52.

    Google Scholar 

  • Rose, D. and Tessier, H. (1959) Composition of ultrafiltrates from milk heated at 80 to 230°F in relation to heat stability. J. Dairy Sci., 42, 969–80.

    Article  CAS  Google Scholar 

  • Rüegg, M., Blanc, B. and Lüscher, M. (1979) Hydration of casein micelles: kinetics and isotherms of water Sorption of micellar casein isolated from fresh and heat-treated milk. J. Dairy Res., 46, 325–8.

    Article  Google Scholar 

  • Saidi, B. and Warthesen, J.J. (1993) Heat and fermentation effects on total nonprotein nitrogen and urea in milk J. Food Sci., 58, 548–51.

    Article  CAS  Google Scholar 

  • Sawyer, W.H. (1969) Complex between β-lactoglobulin andκ-casein. A review. J. Dairy Sci., 52, 323–9.

    Article  Google Scholar 

  • Sawyer, W.H., Coulter, S.T. and Jenness, R. (1963) Role of sulfydryl groups in the interaction ofκ-casein and β-lactoglobulin. J. Dairy Sci., 46, 564–5.

    Article  CAS  Google Scholar 

  • Schmidt, D.G. and Koops, J. (1977) Properties of artificial casein micelles. 2. Stability towards ethanol, dialysis, pressure and heat in relation to casein composition. Neth. Milk Dairy J., 31, 342–57.

    CAS  Google Scholar 

  • Schmidt, D.G. and Poll, J.K. (1986) Electrokinetic measurements on unheated and heated casein micelle systems. Neth. Milk Dairy J., 40, 269–80.

    CAS  Google Scholar 

  • Shalabi, S.I. and Fox, P.F. (1982a) Heat stability of milk: synergic action of urea and carbonyl compounds. J. Dairy Res., 49, 197–207.

    Article  CAS  Google Scholar 

  • Shalabi, S.I. and Fox, P.F. (1982b) Effect ofκ-carrageenan on the heat stability and rennet coagulation of milk. Irish J. Food Sci. Technol., 6, 183–8.

    CAS  Google Scholar 

  • Shalabi, S.I. and Fox, P.F. (1982c) Heat stability of milk: Influence of cationic detergents on the pH sensitivity. J. Dairy Res., 49, 597–605.

    Article  CAS  Google Scholar 

  • Shalabi, S.I. and Fox, P.F. (1982d) Heat stability of milk: influence of modification of lysine and arginine on the heat stability-pH profile. J. Dairy Res., 49, 607–17.

    Article  CAS  Google Scholar 

  • Shalabi, S.I. and Fox, P.F. (1982e) Effect of diacetyl on the heat stability of concentrated milks. J. Food Technol., 17, 753–60.

    Article  CAS  Google Scholar 

  • Sharma, R. and Singh, H. (1999) Heat stability of recombined milk systems as influenced by the composition of fat globule surface layers. Milchwissenschaft, 54, 193–6.

    CAS  Google Scholar 

  • Singh, H. (1988) Effects of high temperatures on casein micelles. N.Z. J. Dairy Sci. Technol., 23, 257–73.

    CAS  Google Scholar 

  • Singh, H. (1994) Crosslinking of milk proteins on heating concentrated milk at 120°C. Int. Dairy J., 4, 477–89.

    Article  CAS  Google Scholar 

  • Singh, H. (1995) Heat-induced changes in caseins including interactions with whey proteins, in Heat-induced Changes in Milk, (P.F. Fox ed.) Special Issue 9501, International Dairy Federation, Brussels, pp. 86–99.

    Google Scholar 

  • Singh, H. and Creamer, L.K. (1991a) Influence of concentration of milk solids on the dissociation of micellarκ-casein on heating reconstituted milk at 120°C. J. Dairy Res., 58, 99–105.

    Article  CAS  Google Scholar 

  • Singh, H. and Creamer, L.K. (1991b) Aggregation and dissociation of milk protein complexes in heated reconstituted skim milk, J. Food Sci., 56, 238–6.

    Article  CAS  Google Scholar 

  • Singh, H. and Creamer, L.K. (1991c) Changes in size and composition of protein aggregates on heating reconstituted concentrated skim milk at 120°C. J Food Sci., 56, 671–77.

    Article  CAS  Google Scholar 

  • Singh, H. and Creamer, L.K. (1991d) Denaturation, aggregation and heat stability of milk protein during the manufacture of skim milk powder. J. Dairy Res., 58, 269–83.

    Article  CAS  Google Scholar 

  • Singh, H. and Creamer, L.K. (1992) Heat stability of milk, in Advanced Dairy Chemistry-I Proteins, (P.F. Fox ed.) Elsevier Applied Science Publishers, London. pp. 621–56.

    Google Scholar 

  • Singh, H. and Fox, P.F. (1985a) Heat stability of milk: the mechanism of stabilization by formaldehyde. J. Dairy Res., 52, 65–76.

    Article  CAS  Google Scholar 

  • Singh, H. and Fox, P.F. (1985b) Heat stability of milk: pH-dependent dissociation of micellarκ-casein on heating milk at ultra high temperatures. J. Dairy Res., 52, 529–38.

    Article  CAS  Google Scholar 

  • Singh, H. and Fox, P.F. (1986) Heat stability of milk: further studies on the pH-dependent dissociation of micellarκ-casein. J. Dairy Res., 53, 237–48.

    Article  CAS  Google Scholar 

  • Singh, H. and Fox, P.F. (1987a) Heat stability of milk: Influence of modifying sulphydryl-disulphide interactions on the heat coagulation time-pH profile. J. Dairy Res., 54, 347–59.

    Article  CAS  Google Scholar 

  • Singh, H. and Fox, P.F. (1987b) Heat stability of milk: role of β-lactoglobulin in the pH-dependent dissociation of micellarκ-casein. J. Dairy Res., 54, 509–21.

    Article  CAS  Google Scholar 

  • Singh, H. and Fox, P.F. (1987c) Heat stability of milk: influence of colloidal and soluble salts and protein modification on the pH-dependent dissociation of micellarκ-casein. J. Dairy Res., 54, 523–34.

    Article  CAS  Google Scholar 

  • Singh, H. and Lantham, J.M. (1993) Heat stability of milk: aggregation and dissociation of protein at ultra-high temperatures. Int. Dairy J., 3, 225–37.

    Article  CAS  Google Scholar 

  • Singh, H. and Tokley, R.P. (1990) Effects of preheat treatments and buttermilk addition on the seasonal variations in the heat stability of recombined evaporated milk and reconstituted concentrated milk. Aust. J. Dairy Technol., 45, 10–6.

    Google Scholar 

  • Singh, H., Creamer, L.K. and Newstead, D.F. (1995) Heat stability of concentrated milk, in Heat-induced Changes in Milk, (P.F. Fox ed.) Special Issue 9501, International Dairy Federation, Brussels, pp. 256–74.

    Google Scholar 

  • Singh, H., Sharma, R. and Tokley, R.P. (1992) Influence of incorporation of soya lecithin into skim milk powder on the heat stability of recombined evaporated milk. Aust. J. Dairy Technol., 47, 33–7.

    CAS  Google Scholar 

  • Singh, H., Sharma, R., Taylor, M.W. and Creamer L.K. (1996) Heat-induced aggregation and dissociation of protein and fat particles in recombined milk. Neth. Milk Dairy J., 50, 149–66.

    CAS  Google Scholar 

  • Slatter, W.L. and van Winkle, Q. (1952) An eletrophoretic study of the proteins in skim milk. J. Dairy Sci., 35, 1083–93.

    Article  Google Scholar 

  • Smits, P. and van Brouwershaven, J.H. (1980) Heat-induced association of β-lactoglobulin and casein micelles. J. Dairy Res., 47, 313–25.

    Article  CAS  Google Scholar 

  • Snoeren, T.H.M. and van der Spek, C.A. (1977) The isolation of a heat-induced complex from UHTST milk. Neth. Milk Dairy J., 31, 352–5.

    CAS  Google Scholar 

  • Snoeren, T.H.M. and van Riel, J.A.M. (1979) The properties of αs1-group casein. Zuivelziht, 71, 766–8.

    Google Scholar 

  • Snoeren, T.H.M., Koops, J. and Westerbeek, D. (1978) Some features of the heat stability of (concentrated) milk. 4. The effect of the αs2-caseins on the heat stability. Neth. Milk Dairy J., 32, 255–7.

    CAS  Google Scholar 

  • Sommer, H.H. and Binney, T.H. (1923) A study of the factors that influence the coagulation of milk in the alcohol test. J. Dairy Sci., 6, 176–97.

    Article  CAS  Google Scholar 

  • Sommer, H.H. and Hart, E.B. (1919) The heat coagulation of milk. J. Biol. Chem., 40, 137–51.

    CAS  Google Scholar 

  • Sommer, H.H. and Hart, E.B. (1922) The heat coagulation of milk. J. Dairy Sci., 5, 525–43.

    Article  Google Scholar 

  • Stepaniak, L. and Sørhaug, T. (1995) Thermal denaturation of bacterial enzymes in milk, in Heat-induced Changes in Milk, (P.F. Fox ed.) Special Issue 9501, International Dairy Federation, Brussels, pp. 349–59.

    Google Scholar 

  • Sweetsur, A.W.M. and Muir, D.D. (1980a) The use of permitted additives and heat-treatment to optimize the heat-stability of skim milk and concentrated skim milk. J. Soc. Dairy Technol., 33, 101–5.

    CAS  Google Scholar 

  • Sweetsur, A.W.M. and Muir, D.D. (1980b) Effect of concentration by ultrafiltration on the heat stability of skim-milk. J. Dairy Res., 47, 327–35.

    Article  Google Scholar 

  • Sweetsur, A.W.M. and Muir, D.D. (1981) Role of cyanate ions in the urea-induced stabilization of the caseinate complex in skim-milk. J. Dairy Res., 48, 163–6.

    Article  CAS  Google Scholar 

  • Sweetsur, A.W.M. and Muir, D.D. (1982) Natural variation in heat stability of concentrated milk before and after homogenization. J. Soc. Dairy Technol., 35, 120–6.

    Article  CAS  Google Scholar 

  • Sweetsur, A.W.M. and Muir, D.D. (1983a) Effect of homogenization on the heat stability of milk. J. Dairy Res., 50, 291–300.

    Article  CAS  Google Scholar 

  • Sweetsur, A.W.M. and Muir, D.D. (1983b) Influence of sulphydryl group interactions on the heat stability of homogenized concentrated milk. J. Dairy Res., 50, 301–8.

    Article  CAS  Google Scholar 

  • Sweetsur, A.W.M. and White, J.C.D. (1974) Studies on the heat stability of milk protein. I. Interconversion of type A and type B milk heat stability curves. J. Dairy Res., 41, 349–58.

    Article  CAS  Google Scholar 

  • Sweetsur, A.W.M. and White, J.C.D. (1975) Studies on the heat stability of milk protein. III. Effect of heat-induced acidity in milk. J. Dairy Res., 42, 73–88.

    Article  CAS  Google Scholar 

  • Tainturier, G., Roullier, L., Martenot, J.P. and Lorient, D. (1992) Electroassisted glycosylation of bovine casein: An alternative to the use of reducing chemicals in N-alkylation of proteins. J. Agric. Food Chem., 40, 760–3.

    Article  CAS  Google Scholar 

  • Tan-Kintia, R.H. (1996) Heat-induced Changes and the Heat Stability of Milk, Ph.D thesis, National University of Ireland, Cork.

    Google Scholar 

  • Tan-Kintia, R.H. and Fox, P.F. (1996) Effect of enzymic hydrolysis of lactose on the heat stability of milk or reconstituted milk. Neth. Milk Dairy J., 50, 267–77.

    CAS  Google Scholar 

  • Tan-Kintia, R. and Fox, P.F. (1999) Effect of various preheat treatments on the heat stability of unconcentrated milk. Int. Dairy J., 9, 219–25.

    Article  CAS  Google Scholar 

  • Tessier, H. and Rose, D. (1964) Influence ofκ-casein and β-lactoglobulin on the heat stability of skim milk. J. Dairy Sci., 47, 1047–51.

    Article  CAS  Google Scholar 

  • Thompson, M.P., Boswell, R.T., Martin, V., Jenness, R. and Kiddy, C.A. (1969) Casein-pellet-solvation and heat stability of individual cow’s milk. J. Dairy Sci., 52, 796–8.

    Article  Google Scholar 

  • Tobias, J., McWhitney, R.M. and Tracy, P.H. (1952) Electrophoretic properties of milk proteins. II. Effect of heating at 300°F by means of the Mallory small tube heat exchanger. J. Dairy Sci., 35, 1036–45.

    Article  CAS  Google Scholar 

  • Trautman, J.C. and Swanson, A.M. (1958) Additional evidence of a stable complex between β-lactoglobulin and α-casein. J. Dairy Sci., 41, 715.

    Google Scholar 

  • Turner, L.G., Swaisgood, H.E. and Hansen, A.P. (1978) Interaction of lactose and proteins of skim milk during ultrahigh-temperature processing. J. Dairy Sci., 61, 384–92.

    Article  CAS  Google Scholar 

  • Tziboula, A. (1997) Casein diversity in caprine milk and its relation to technological properties: heat stability. Int. J. Dairy Technol., 4, 134–7.

    Article  Google Scholar 

  • Tziboula, A. and Muir, D.D. (1993) Effect of starches on the heat stability of milk Int. J. Food Sci. Technol., 28, 13–24.

    Article  CAS  Google Scholar 

  • Tziboula, A., Steele, W., West, I. and Muir, D.D. (1998) Microfiltration of milk with ceramic membranes: influence of casein composition and heat stability. Milchwissenschaft, 53, 8–11.

    CAS  Google Scholar 

  • van Boekel, M.A.J.S. (1999) Heat-induced deamidation, dephosphorylation and breakdown of caseinate. Int. Dairy J., 9, 237–41.

    Article  Google Scholar 

  • van Boekel, M.A.J.S., Nieuwenhuijse, J.A. and Walstra, P. (1989a) The heat coagulation of milk: Mechanisms. Neth. Milk Dairy J., 43, 97–127.

    Google Scholar 

  • van Boekel, M.A.J.S., Nieuwenhuijse, J.A. and Walstra, P. (1989b) The heat coagulation of milk. 3. Comparison of theory and experiment. Neth. Milk Dairy J., 43, 147–62.

    Google Scholar 

  • van den Berg, G., Esher, J.T.M., de Koning, P.J. and Bovenhuis, H. (1992) Genetic polymorphism ofκ-casein and β-lactoglobulin in relation to milk composition and processing properties. Neth. Milk Dairy J., 46, 145–68.

    Google Scholar 

  • van Mil, P.J.J.M. and de Koning, J. (1992) Effect of heat treatment, stabilizing salts and seasonal variation on heat stability of reconstituted concentrated skim milk. Neth. Milk Dairy J., 46, 169–82.

    Google Scholar 

  • van Winter, J.M. (1994) The consumption of dairy products in the Netherlands in the fifteenth and sixteenth century, in Milk and Milk Products from Medieval to Modern Times, (P. Lysght ed.) Canongate Academic, Edinburgh, pp. 3–13.

    Google Scholar 

  • Vujicic, I.F. and Vulicic, M. (1991) The effects of forewarning on the heat stability of milk. Mljekarstvo, 41, 59–64. [cited form CAB Abstr. 930462460].

    Google Scholar 

  • Walstra. P. and Jenness, R. (1984) Dairy Chemistry and Physics, Wiley and Sons, New York.

    Google Scholar 

  • Webb, B.H. (1928) Heat coagulation of evaporated milk as affected by mixing different grades of raw milk. J. Dairy Sci., 11, 471–8.

    Article  CAS  Google Scholar 

  • Webb, B.H. and Bell, R.W. (1942) The effect of high-temperature short-time forewarming of milk upon the heat stability of its evaporated product. J. Dairy Sci., 25, 301–11.

    Article  Google Scholar 

  • Webb, B.H. and Holm, G.E. (1932) The heat coagulation of milk. II. The influence of various added salts upon the heat stability of milks of different concentrations. J. Dairy Sci., 15, 345–66.

    Article  CAS  Google Scholar 

  • Whitaker, J.R. (1980) Changes occurring in proteins in alkaline solution, in Chemical Deterioration of Proteins. (J.R. Whitaker and M. Fujimaki eds.) American Chemical Society, Washington, DC, pp. 145–63.

    Chapter  Google Scholar 

  • White, J.C.D. and Davies, D.T. (1966) The stability of milk protein to heat. III. Objective measurement of heat stability of milk. J. Dairy Res., 36, 93–102.

    Article  Google Scholar 

  • Whiteley, A.J. and Muir, D.D. (1996) Heat stability of homogenised concentrated milk. 2. Synergic effect of addition of sodium caseinate and urea. Milchwissenchaft, 51, 385–90.

    CAS  Google Scholar 

  • Wong, D.W.S., Camirand, W.M. and Pavlath, A.E. (1996) Structure and functionalities of milk proteins. CRC Crit. Rev. Food Sci. Nut., 36, 807–44.

    Article  CAS  Google Scholar 

  • Zbikowska, A., Dziuba, J., Jaworska, H. and Zaborniaic, A. (1992) The influence of casein micelle size on selected functional properties of bulk milk proteins. Polish J. Food Nut. Sci., 42, 23–32.

    Google Scholar 

  • Zbikowska, A., Dziuba, J., Kostyra, H. and Smoczynska, K. (1989) A study of the relationship between the molecular state and the physico-chemical properties of milk proteins. Milchwissenschaft, 44, 25–8.

    CAS  Google Scholar 

  • Zittle, C.A. (1969a) Influence of heat onκ-casein. J. Dairy Sci., 52, 12–16.

    Article  CAS  Google Scholar 

  • Zittle, C.A. (1969b) Influence of heat onκ-casein: effect of αs-casein and concentration of calcium chloride and sodium chloride. J. Dairy Sci., 52, 1356–8.

    Article  CAS  Google Scholar 

  • Zittle, C.A., Dellamonicia, E.S., Rudd, R.K. and Custer, J.H. (1957) The binding of calcium ions by β-lactoglobulin both before and after aggregation by heating in the presence of calcium ions. J. Am. Chem. Soc. 79, 4661–46.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

O’Connell, J.E., Fox, P.F. (2003). Heat-Induced Coagulation of Milk. In: Fox, P.F., McSweeney, P.L.H. (eds) Advanced Dairy Chemistry—1 Proteins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8602-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8602-3_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47271-8

  • Online ISBN: 978-1-4419-8602-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics