Advertisement

Quantitation of Proteins in Milk and Milk Products

  • L. Tremblay
  • M. F. Laporte
  • J. Léonil
  • D. Dupont
  • P. Paquin

Abstract

This review is an update of a previous chapter published by Ribadeau-Dumas and Grappin (1992). It mostly deals with the current and recently published techniques for analysis of protein in milk and other dairy products, as well as those that could eventually come into general use. For all these techniques, the reader will be provided with their basic principles, schematic description, instrumentation, analytical performance and references.

Keywords

Dairy Product Milk Sample Whey Protein Milk Protein Capillary Zone Electrophoresis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AOAC

Association of Official Analytical Chemists

Arg

Arginine

Asp

Asparagine

BSA

Bovine serum albumin

CD

Circular dichroism

CE

Capillary electrophoresis

CID

Collision-induced dissociation

CMP

Caseino-macropeptide

CN

Casein

COSY

Humonuclear shift correlation spectrometry

CP

Casein protein

CZE

Capillary zone electrophoresis

DBC

Dye binding capacity

DC

Derivative of the concentration

DE

Delayed extraction

DEAE-TSK

Diethylaminoethyl-TSK

DN

Dumas nitrogen

DNA

Deoxy ribonucleic acid

DR

Derivative of the respond

DTT

Dithiothreitol

ELISA

Enzyme-Linked ImmunoSorbent Assay

ES

Electrospray

ESI

Electrospray ionization

FAB

Fast Atomic Bombardment

FIA

Flow injection analysis

FPLC

Fast protein liquid chromatography

FTIR

Fourier transform infrared

Glu

Glutamine

HA

Hydroxyapatite

HI-HPLC

Hydrophobie interaction HPLC

His

Histidine

HPLC

High performance liquid chromatography

IDF

International Dairy Federation

IEF

Isoelectric focusing

Ig

Immunoglobulin

IR

Infrared

IRMA

Infra-red milk analyser

ISO

International Standardization Organization

KN

Kjeldahl nitrogen

α-La

α-Lactalbumin

LC-MS

Liquid chromatography mass spectrometry

β-Lg

β-Lactoglobulin

Lys

Lysine

MAD

Multiple anomalous dispersions

MALDI

Matrix-assisted laser desorption ionization

MES

2-(N-morpholino)-ethanesulfonic acid

MHEC

Methylhydroxyethylcellulose

Mid-IR

Mid-infrared

MIR

Mid-infrared

MLR

Multiple linear regression

MS

Mass spectrometry

NCN

Non-casein nitrogen

NIR

Near-infrared

NMR

Nuclear magnetic resonance

NOE

The nuclear Overhauser effect

NPN

Non-protein nitrogen

PCR

Principal components regression

PLG

Plasminogen

PLM

Plasmin

PLS

Partial least squares

PSD

Post-source decay

PTH

Phenylthiohydantoin

R

Reproducibility

RSD

Relative standard deviation

R2

Correlation coefficient

RIAs

Radioimmunoassays

RP-HPLC

Reversed phase HPLC

RSDr

Repeatability relative standard deviation

RSDR

Reproducibility relative standard deviations

SDS

Sodium dodecylsulfate

PAGE

Polyacrylamide gel electrophoresis

SEC

Standard error calibration

SEP

Standard error prediction

Ser

Serine

SD

Standard deviation

SRID

single radial immunodiffusion

Sy,x

Accuracy or residual standard deviation

TCA

Trichloroacetic acid

TFA

Trifluoroacetic acid

Thr

Threonine

TN

Total nitrogen

TOCSY

Total correlation spectroscopy

TOF

Time-of-flight

TP

True pro tein

UHT

Ultra-high temperature

UV

Ultraviolet

WPC

Whey protein concentr ate

WPs

Whey proteins

λ

Wavelength

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdurahman, O.A. (1995) Milk N-acetyl beta-D-glucosaminidase and serum albumin as indicators of subclinical mastitis in the camel. Zentralbl. Veterinaermed., 42, 643–7.CrossRefGoogle Scholar
  2. Addeo, F., Garro, G., Intorcia, N., Pellegrino, L., Resmini P. and Chianese L. (1995a) Gel electrophoresis and immunoblotting for the detection of casein proteolysis in cheese. J. Dairy Res., 62, 297–309.CrossRefGoogle Scholar
  3. Addeo, F., Nicolai, M.A., Chianese, L., Moio, L., Musso, S.S., Bocca, A. and Del Giovine, L. (1995b) A control method to detect bovine milk in ewe and water buffalo cheese using immunoblotting. Milchwissenschaft, 50, 83–5.Google Scholar
  4. Adler, A.J., Greenfield, N.J. and Fasman, G.D. (1973) Circular dichroism and optical rotatory dispersion of proteins and polypeptides, in Methods in Enzymology, (C.H.W. Hirs and S.N. Timasheff eds.) Academic Press, New York, Vol. 27, pp. 675–735.Google Scholar
  5. Agnet, Y. (1998) Fourier transform infrared spectroscopy a new concept for milk and milk product analysis, Bulletin 332, International Dairy Federation, Brussels, pp. 58–68.Google Scholar
  6. Alais, C, Ribadeau Dumas, B. and Saint Lebe, L. (1961) Etude de la reaction des proteines du lait avec le Noir Amido. Application au dosage rapide des matieres azotees du lait. Lait, 41, 241–73.CrossRefGoogle Scholar
  7. Akerlund, S., Hanson, L.A., Ahlstedt, S. and Carlsson, B. (1977) A sensitive method for specific quantitation of secretory IgA. Scand. J. Immunol., 6, 1275–82.CrossRefGoogle Scholar
  8. Al Mashikhi, S.A. and Nakai, S. (1987) Isolation of bovine immunoglobulins and lactoferrin from whey proteins by gel filtration techniques. J. Dairy Sci., 70, 2486–92.CrossRefGoogle Scholar
  9. Alexandrescu, A.T., Evans, P.A., Pitkcathly, M., Baum, J. and Dobson, CM. (1993) Structure and dynamics of the acid denatured molten globule state of alpha lactalbumin: a two dimensional NMR study. Biochemistry, 32, 1707–18.CrossRefGoogle Scholar
  10. Alli, I., Okoniewska, M., Gibbs, B.F. and Konishi, Y. (1998) Identification of peptides in Cheddar cheese by electrospray ionization mass spectrometry. Int. Dairy J., 8, 643–9.CrossRefGoogle Scholar
  11. Andersson, H., Andren, A. and Björck, L. (1989) An enzyme linked immunosorbent assay for detection of chymosin in dairy products. J. Dairy Sci., 72, 3129–33.CrossRefGoogle Scholar
  12. Andrews, A.L., Atkinson, D., Evans, M.T.A., Finer, E.G., Green, J.P., Phillips, M.C. and Robertson, R.N. (1979) The conformation and aggregation of bovine β casein A. I. Molecular aspects of thermal aggregation. Biopolymers, 18, 1105–21.CrossRefGoogle Scholar
  13. Andrews, A.T. (1983) Proteinases in normal bovine milk and their action on caseins. J. Dairy Res., 50, 45–55.CrossRefGoogle Scholar
  14. Andrews, A.T. (1986) Polyacrylamide gel electrophoresis using multiphasic buffer systems, in Electrophoresis. Theory, Techniques, and Biochemical and Clinical Applications, Second Edition, (A.R. Peacocke and W.F. Harrington eds.) Clarendon Press, Oxford, pp. 79–92.Google Scholar
  15. Andrews, A.T., Taylor, M.D. and Owen, A.J. (1985) Rapid analysis of bovine milk proteins by HPLC. J. Chromatogr., 348, 177–85.CrossRefGoogle Scholar
  16. Anguita, G., Martin, R., Garcia, T., Morales, P., Haza, A.I., Gonzalez, I., Sanz, B. and Hernandez, P.E. (1995) Indirect ELISA for detection of cows’ milk in ewes’ and goats’ milks using a monoclonal antibody against bovine β-casein. J. Dairy Res., 62, 655–9.CrossRefGoogle Scholar
  17. Anguita, G., Martin, R., Garcia, T., Morales, P., Haza, A.I., Gonzalez, I., Sanz, B. and Hernandez, P.E. (1996) Immunostick ELISA for detection of cow’s milk in ewe’s milk and cheese using a monoclonal antibody against bovine β-casein. J. Food Prot., 59, 436–7.Google Scholar
  18. Anguita, G., Martin, R., Garcia, T., Morales, P., Haza, A.I., Gonzalez, I., Sanz, B. and Hernandez, P.E. (1997) A competitive enzyme linked immunosorbent assay for detection of bovine milk in ovine and caprine milk and cheese using a monoclonal antibody against bovine β-casein. J. Food Prot., 60, 65–6.Google Scholar
  19. Anonymous, (1998) Nitrogen in milk, Application note. Form. No 203 821 029 LECO corporation, Michigan, USA.Google Scholar
  20. AOAC (1984) Official Methods of Analysis, 14th edn, Association of Official Analytical Chemists, Washington, DC.Google Scholar
  21. AOAC (1995) Official Methods of Analysis, 16th edn, Association of Official Analytical Chemists, Washington, DC.Google Scholar
  22. Aoki, T., Yamada, N., Tomito I., Kako, Y. and Imamura, T. (1987) Caseins are cross linked through their ester phosphate groups by colloidal calcium phosphate. Biochim. Biophys. Acta, 911, 238–43.CrossRefGoogle Scholar
  23. Arnott, D., Shabanowitz, J. and Hunt, D.F. (1993) Mass spectrometry of proteins and peptides: sensitive and accurate mass measurement and sequence analysis. Clin. Chem., 39, 2005–10.Google Scholar
  24. Ashaffenburg, R. and Drewry, J. (1959) New procedure for the routine determination of non casein proteins of milk. Proc. XV Int. Dairy Congr., London, 3,1631–7.Google Scholar
  25. Ashworth, U.S. and Chaudry, M.A. (1962) Dye binding capacity of milk proteins for Amido Black 10 B and Orange G. J. Dairy Sci., 45, 952–7.Google Scholar
  26. Avrameas, S. and Ternynck, T. (1969) The cross linking of proteins with glutaraldehyde and the preparation of immunosorbents. Immunochemistry, 6, 53–66.CrossRefGoogle Scholar
  27. Baer, R.J., Frank, J.F. and Loewenstein, M. (1983) Compositional analysis of non fat dry milk by using near infrared diffuse reflectance spectroscopy. J. Assoc. Off. Anal. Chem. Int., 66, 858–63.Google Scholar
  28. Bailey, J.M., Shenoy, N.R., Ronk, M. and Shively, J.E. (1992) Automated carboxy terminal sequence analysis of peptides. Protein Sci., 1, 68–80.CrossRefGoogle Scholar
  29. Ballabriga, A. (1982) Immunity of the infantile gastro intestinal tract and implication in modern feeding. Acta Pediatr. Jap., 24, 235–9.CrossRefGoogle Scholar
  30. Banks, J.F. (1997). Recent advances in capillary electrophoresis/electrospray/mass spectrometry. Electrophoresis, 18, 2255–66.CrossRefGoogle Scholar
  31. Barbano, D.M. and Clark, J.L. (1989) Infra red milk analysis. Challenge for the future. J. Dairy Sci., 72, 1627–36.CrossRefGoogle Scholar
  32. Barbano, D.M. and Clark, J.L. (1990) Total nitrogen content of milk: a rapid microwave Kjeldahl digestion. J. Dairy Sci., 73(suppl. 1), 83.Google Scholar
  33. Barbano, D.M. and Delavelle, M.E. (1987) Rapid method for determination of milk casein content by infra red analysis. J. Dairy Sci., 70, 1524–8.CrossRefGoogle Scholar
  34. Barbano, D.M. and Lynch, J.M. (1991) Direct and indirect determination of true protein content of milk by Kjeldahl analysis: collaborative study. J. Assoc. Off. Anal. Chem. Int., 74, 281–8.Google Scholar
  35. Barbano, D.M., Clark, J.L., Dunham, C.E. and Fleming, J.R. (1990a) Kjeldahl method for determination of total nitrogen content of milk: Collaborative study. J. Assoc. Off. Anal. Chem. Int., 73, 849–59.Google Scholar
  36. Beavis, R.C. and Chait, B.T. (1989) Factors affecting the ultraviolet laser desorption of proteins. Rapid Commun. Mass Spectrom., 3, 233–37.CrossRefGoogle Scholar
  37. Beck, N.F.G. and Tucker, H.A. (1977) Relationships between radioimmunoas-says of alpha lactalbumin and prolactin in bovine skim milk. J. Dairy Sci., 60, 542–5.CrossRefGoogle Scholar
  38. Beer, M., Krause, I., Stapf, M., Schwarzer, C. and Klostermeyer, H. (1996) Indirect competitive ELISA for the detection of native and heat denatured bovine β-lactoglobulin in ewes’ and goats’ milk cheese. Z. Lebensm. Unters. Forsch., 203, 21–6.CrossRefGoogle Scholar
  39. Bicsak, R.C. (1993) Comparison of Kjeldahl method for determination of crude protein in cereal grains and oilseeds with generic combustion method: collaborative study. J. Assoc. Off. Anal. Chem. Int., 76, 780–6.Google Scholar
  40. Biggs, D.A. (1979a) Performance signification for infrared milk analysis. J. Assoc. Off Anal. Chem. Int., 62, 1211–4.Google Scholar
  41. Biggs, D.A. (1979b) Applications of infra red instrumentation in cheese analysis. Estimation of fat, protein and total solids in cottage cheese with Multispec M, in First Biennal Marschall International Cheese Conference, Miles Laboratories Inc., Madison. WI, USA, pp. 409–14.Google Scholar
  42. Biggs, D.A., Johnsson, G. and Sjaunja, L.O. (1987) Analysis of fat, protein, lactose and total solids by infra red absorption, Bulletin 208, International Dairy Federation, Brussels, pp. 21–30.Google Scholar
  43. Birkeland, S.E., Stepaniak, L. and Sorhaug, T. (1985) Quantitative studies of heat stable proteinase from Pseudomonas fluorescens P1 by the Enzyme Linked Immunosorbent Assay. Appl. Environ. Microbiol., 49, 382–7.Google Scholar
  44. Bitri, L., Rolland, M.P. and Besançon, P. (1993) Immunological detection of bovine caseinomacropeptide in ovine and caprine dairy products. Milchwissenschaft, 48, 367–71.Google Scholar
  45. Blakesley, R.W. and Boezi, J.A. (1977) A new staining technique for proteins in polyacrylamide gels using Coomassie Brillant Blue G 250. Anal. Biochem., 82, 580–2.CrossRefGoogle Scholar
  46. Blanc, B. (1982) Les protéines du lait à activité enzymatique et hormonale. Lait, 62, 350–95.CrossRefGoogle Scholar
  47. Bobe, G., Beitz, D.C., Freeman, A.E. and Lindberg, G.L. (1998a) Separation and quantification of bovine milk proteins by reversed phase high performance liquid chromatography. J. Agric. Food Chem., 46, 458–63.CrossRefGoogle Scholar
  48. Bobe, G., Beitz, D.C., Freeman, A.E. and Lindberg, G.L. (1998b) Sample preparation affects separation of whey proteins by reversed phase high performance liquid chromatography. J. Agric. Food Chem., 46, 1321–5.CrossRefGoogle Scholar
  49. Bonetto, V., Bergman, A.C., Jornvall, H. and Sillard, R. (1997) C-Terminal sequence analysis of peptides and proteins using carboxypeptidases and mass spectrometry after derivatization of Lys and Cys residues. Anal. Chem., 69, 1315–9.CrossRefGoogle Scholar
  50. Boudjellab, N., Rolet Repecaud, O. and Collin, J.C. (1994) Detection of residual chymosin in cheese by an enzyme linked immunosorbent assay. J. Dairy Res., 61, 101–9.CrossRefGoogle Scholar
  51. Boudjellab, N., Grosclaude, J., Zhao, X. and Collin, J.C. (1998) Development of an inhibition enzyme linked immunosorbent assay for the detection of residual porcine pepsin in a soft cheese sample. J. Agric. Food Chem., 46, 4030–3.CrossRefGoogle Scholar
  52. Bovenhuis, H. and Verstege, A.J.M. (1989) Improved method for phenotyping milk protein variants by isoelectric focusing using PhastSystem. Neth. Milk Dairy J., 43, 447–51.Google Scholar
  53. Bradstreet, R.B. (1965) The Kjeldahl Method for Organic Nitrogen, Academic Press, New York.Google Scholar
  54. Brignon, G., Chtourou, A. and Ribadeau Dumas, B. (1984) Contamination of human whole casein by whey proteins. Quantitative aspects. Lait, 64. 537–43CrossRefGoogle Scholar
  55. Brownlow, S., Cabrai, M.J.H., Cooper, R., Flower, D.R., Yewdall, S.J., Polikarpov, I., North, A.C.T. and Sawyer, L. (1997) Bovine β-lactoglobulin at 1.8 Å resolution—still an enigmatic lipocalin. Structure, 5, 481–95.CrossRefGoogle Scholar
  56. Burlingame, A.L., Boyd, R.K. and Gaskell, S.J. (1998) Mass spectrometry. Anal. Chem., 70, 647R–716R.CrossRefGoogle Scholar
  57. Caffin, J.P., Poutrel, B. and Rainard, P. (1983) Physiological and pathological factors influencing immunoglobulin G1 concentration in milk. J. Dairy Sci., 66, 2161–6.CrossRefGoogle Scholar
  58. Carles, C. (1986) Fractionation of bovine caseins by reversed phase high performance chromatography: identification of a genetic variant J. Dairy Res., 53, 35–41.CrossRefGoogle Scholar
  59. Carter, R.M., Jr. and Sweet, R.M. (1997) Macromolecular crystallography. Part A. In Methods in Enzymology, Academic Press, San Diego, USA, 276, pp. 659.Google Scholar
  60. Catinella, S., Traldi, P., Pinelli, C. and Dallaturca, E. (1996a) Matrix assisted laser desorption/ionization mass spectrometry: a valid analytical tool in the dairy industry. Rapid Commun. Mass Spectrom., 10, 1123–7.CrossRefGoogle Scholar
  61. Catinella, S., Traldi, P., Pinelli C, Dallaturca, E. and Marsilio, R. (1996b) Matrix assisted laser desorption/ionization mass spectrometry in milk science. Rapid Commun. Mass Spectrom., 10, 1629–37.CrossRefGoogle Scholar
  62. Cattaneo, T.M.P., Nigro, F., Toppino, P.M. and Denti V. (1996) Characterization of ewe’s milk by capillary zone electrophoresis. J. Chromatogr. A, 721, 345–9.CrossRefGoogle Scholar
  63. Chang Sam, K.C. (1998), Protein Analysis in Food Analysis, 2nd edn, (S.S. Nielsen ed.) Aspen Publishers, Gaithersburg, MD, pp. 237–49.Google Scholar
  64. Chaplin, L.C. (1986) Hydrophobic interaction fast protein liquid chromatography of milk proteins. J. Chromatogr., 363, 329–35.CrossRefGoogle Scholar
  65. Chapot Chartier, M.P., Deniel, C, Rousseau, M., Vassal, L. and Gripon, J.C. (1994) Autolysis of two strains of Lactococcus lactis during cheese ripening. Int. Dairy J., 4, 251–69.CrossRefGoogle Scholar
  66. Chaurand, P., Luetzenkirchen, F. and Spengler, B. (1999) Peptide and protein identification by matrix-assisted laser desorption ionization (MALDI) and MALDI Post Source decay time of flight mass spectrometry. J. Am. Soc. Mass Spectrom., 10, 91–103.CrossRefGoogle Scholar
  67. Chen, Y.S. and Hach, C.C., (1988) Accuracy in Kjeldahl protein analysis. American Laboratory, June, 62–7.Google Scholar
  68. Chen, F.T.A. and Tusak, A. (1994) Characterization of food proteins by capillary electrophoresis. J. Chromatogr. A, 685, 331–7.CrossRefGoogle Scholar
  69. Chen, F.T.A. and Zang, J.H. (1992) Determination of milk proteins by capillary electrophoresis. J. Assoc. Off. Anal. Chem. Int., 75, 905–9.Google Scholar
  70. Chen, A.O., Chen, Y.S. and Hsieh, N. (1994) Quantitative analysis of composition by near infrared spectroscopy and price estimation on raw bovine milk. J. Chin. Agric. Chem. Soc, 32, 384–94.Google Scholar
  71. Chianese, L., Garro, G., Ferranti, P., Malorni, A., Addeo, F., Rabaco, A. and Pons, P.M. (1995) Discrete phosphorylation generates the electrophoretic heterogeneity of ovine β-casein. J. Dairy Res., 62, 89–100.CrossRefGoogle Scholar
  72. Chtourou, A., Brignon, G. and Ribadeau Dumas, B. (1985) Quantification of β-casein in human milk. J. Dairy Res., 52, 239–47.CrossRefGoogle Scholar
  73. Clements, R.S., Wyatt, D.M., Symons, M.H. and Ewings, K.N. (1990) Inhibition enzyme linked immunosorbent assay for detection of Pseudomonas fluorescens proteases in ultrahigh temperature treated milk. Appl. Environ. Microbiol, 56, 1188–90.Google Scholar
  74. Clore, G.M. and Gronenborn, A.M. (1991) Structures of larger proteins in solution: three and four dimensional heteronuclear NMR spectroscopy. Science, 252, 1390–9.CrossRefGoogle Scholar
  75. Clore, G.M. and Gronenborn, A.M. (1998) Determining the structure of large proteins and protein complexes by NMR. Trends Biotechnol., 16, 22–34.CrossRefGoogle Scholar
  76. Collard Bovy, C., Marchai, E., Humbert, G., Linden, G., Montagne, P., El Bari, N., Duheille, J. and Varcin, P. (1991) Microparticle enhanced nephelometric immunoassay. 1. Measurement of αS2-casein and κ-casein. J. Dairy Sci., 74, 3695–701.CrossRefGoogle Scholar
  77. Collin, J.C, Kokelaar, A., Rollet Repecaud, O. and Delacroix Buchet, A. (1991) Dosage des caséines du lait de vache par électrophorèse et par Chromatographie liquide rapide d’échange d’ions (FPLC®): comparaison des résultats. Lait, 71, 339–50.CrossRefGoogle Scholar
  78. Courroye, M., Berdague, J.L. and Leray, O. (1989) Application de la technique FIA (Flow Injection Analysis) au dosage des fractions azotees du fromage. Lait, 69, 233–41.CrossRefGoogle Scholar
  79. Creamer, L.K. (1991) Electrophoresis of cheese, Bulletin 261, International Dairy Federation, Brussels, pp. 14–28.Google Scholar
  80. Creamer, L.K. and Richardson, T. (1984) Anomalous behaviour of bovine αS1-and β-caseins on gel electrophoresis in sodium dodecyl sulfate buffer. Arch. Biochem. Biophys., 234, 476–86.CrossRefGoogle Scholar
  81. Curley, D.M., Kumosinski, T.F., Unruh, J.J. and Farrell., H.M., Jr. (1998) Changes in the secondary structure of bovine casein by Fourier Transform Infrared Spectroscopy: effects of calcium and temperature. J. Dairy Sci., 81, 3154–62.CrossRefGoogle Scholar
  82. Dalgleish, D.G. (1985) Glycosylated κ-casein and the size of bovine casein micelles. Analysis of the different forms of the κ-casein. Biochim. Biophys. Acta, 830, 213–5.CrossRefGoogle Scholar
  83. de Frutos, M., Molina, E. and Amigo, L. (1996) Applicability of capillary electrophoresis to the study of bovine β-lactoglobulin polymorphism. Milchwissenschaft, 51, 374–8.Google Scholar
  84. de Jong, N., Visser, S. and Olieman, C. (1993) Determination of milk proteins by capillary electrophoresis. J. Chromatogr. A., 652, 207–13.CrossRefGoogle Scholar
  85. de Vilder and Bossuyt (1983) Practical experiences with an InfraAlyzer 400 in determining the water, protein and fat content of milk powder. Milchwissenschaft, 37, 65–9.Google Scholar
  86. Diaz Carillo, E., Munoz Serrano, A., Alonso Moraga, A. and Serradilla Manrique, J.M. (1993) Near infrared calibrations for goat’s milk components: protein, total casein, αS2, β, and κ-caseins, fat and lactose. J. Near Infrared Spectrosc, 1, 141–6.CrossRefGoogle Scholar
  87. Dimenna, G.P. and Segall, H.J. (1981) High performance gel permeation of bovine skim milk proteins. J. Liq. Chromatogr., 4. 639–49.CrossRefGoogle Scholar
  88. Dong, C. and Ng Kwai Hang, K.F. (1998) Characterization of a non electrophoretic genetic variant of β-casein by peptide mapping and mass spectrometric analysis. Int. Dairy J., 8, 967–72.CrossRefGoogle Scholar
  89. Dong, Y. (1999) Capillary electrophoresis in food analysis. Trends Food Sci. Technol, 10, 87–93.CrossRefGoogle Scholar
  90. Dongré, A.R., Eng, J.K. and Yates, J.R., III (1997) Emerging tandem mass spectrometry techniques for the rapid identification of proteins. Trends Biotechnol, 15, 418–25.CrossRefGoogle Scholar
  91. Dupont, D. (1995) Le Système Piasmine Plasminogene dans la Protéolyse du Lait: Mise au Point d’un Dosage Différentiel des deux Composants à l’Aide de Sondes Antigéniques Monoclonales, PhD Thesis, University of Besançon, France. Google Scholar
  92. Dupont, D. and Grappin, R. (1998) ELISA for differential quantitation of plasmin and plasminogen in cheese. J. Dairy Res., 65, 643–51.CrossRefGoogle Scholar
  93. Dupont, D., Bailly, C, Grosclaude, J. and Collin, J.C. (1997) Differential titration of plasmin and plasminogen in milk using sandwich ELISA with monoclonal antibodies. J. Dairy Res., 64, 77–86.CrossRefGoogle Scholar
  94. Dupont, D., Remond, B. and Collin, J.C. (1998) ELISA determination of plasmin and plasminogen in milk of individual cows managed without the dry period. Milchwissenschaft, 53, 66–9.Google Scholar
  95. Duranti, M., Carpen, A., Iametti, S. and Pagani, S. (1991) α-Lactalbumin detection in heat treated milks by competitive ELISA. Milchwissenschaft, 46, 230–2.Google Scholar
  96. Edman, P. (1970) Sequence determination, in Protein Sequence Determination. (S.B. Needleman ed.) Springer Verlag, Berlin and New York, pp. 211–54.CrossRefGoogle Scholar
  97. Egli, H.R. and Meyback, U. (1984) Measurements of the principal constituents of solid and liquid milk products by means of near infrared analyses. In Challenges to Contemporary Dairy Analytical Techniques, Royal Society of Chemistry, London, pp. 103–16.Google Scholar
  98. Eigel, W.N., Butler, J.E., Ernstrom, C.A., Farrell, H.M., Jr., Harwalkar, V.R., Jenness, R. and Witney, R.McL. (1984) Nomenclature of proteins in cow’s milk: fifth revision. J. Dairy Sci., 67, 1599–631.CrossRefGoogle Scholar
  99. Elfagm, A.A. and Wheelock, J.V. (1978) Heat interaction between α-lactalbumin, β-lactoglobulin and casein in bovine milk. J. Dairy Sci., 61, 159–63.CrossRefGoogle Scholar
  100. Engvall, E. and Perlmann, P. (1971) Enzyme linked immunosorbent assay (ELISA) Quantitation assay to immunoglobulin G. Immunochemistry, 8, 871–4.CrossRefGoogle Scholar
  101. Erhardt, G. (1993) Allele frequencies of milk proteins in German cattle breeds and demonstration of αS2-casein variants by isoelectric focusing. Archiv. Tierzucht. Dummerstorf., 36, 145–52.Google Scholar
  102. Fairise, J.F. and Cayot, P. (1998) New ultrarapid method for the separation of milk proteins by capillary electrophoresis. J. Agric. Food Chem., 46, 2628–33.CrossRefGoogle Scholar
  103. Farah, Z. (1979) Examination of Aschaffenburg and Drewry procedure for determination of non casein proteins of milk by discontinuous polyacrylamide electrophoresis. Z. Lebensm. Unters. Forsch., 168, 394–6.CrossRefGoogle Scholar
  104. Feng, Z.K. and Cunningham-Rundles, C. (1989) Production of a monoclonal antibody to bovine κ-casein. Hybridoma, 8, 223–30.CrossRefGoogle Scholar
  105. Feng, R., Konishi, Y. and Bell, A.W. (1991) High accuracy molecular weight determination and variation characterization of proteins up to 80 ku by ionspray mass spectrometry. J. Am. Soc. Mass Spectrom., 2, 387–401.CrossRefGoogle Scholar
  106. Ferranti, P., Itolli, E., Barone, F., Malorni, A., Garro, G., Laezza, P., Chianese, L., Migliaccio, F., Stingo, V. and Addeo, F. (1997) Combined high resolution Chromatographic techniques (FPLC and HPLC) and mass spectrometry based identification of peptides and proteins in Grana Padano cheese. Lait, 77, 683–97.CrossRefGoogle Scholar
  107. Ferranti, P., Malorni, A. Nitti, G., Laezza, P., Pizzano, R., Chianese, L. and Addeo, F. (1995) Primary structure of ovine αS1-caseins: localization of phosphorylation sites and characterization of genetic variants A, C, D. J. Dairy Res., 62, 281–96.CrossRefGoogle Scholar
  108. Fraenkel-Conrat, H. and Cooper, M. (1944) The use of dyes for the determination of acid and basic groups in proteins. J. Biol. Chem., 154, 289–46.Google Scholar
  109. Frank, J.F. and Birth, G.S. (1982) Application of near infrared reflectance spectroscopy to cheese analysis. J. Dairy Sci., 65, 1110–6.CrossRefGoogle Scholar
  110. Frankhuizen, R. and van der Veen, N.G. (1985) Determination of major and minor constituents in milk powder and cheese by near infrared reflectance spectroscopy. Neth. Milk Dairy J., 39, 191–207.Google Scholar
  111. Frister, H. (1996) Unpublished report submitted to joint IDF/ISO/AOAC Group of Experts, E302, Protein workshop 3pp., cited from Wiles et al. (1998).Google Scholar
  112. Fukushima, Y., Kawata, Y., Onda, T. and Kitagawa, M. (1997) Consumption of cow milk and egg by lactating women and the presence of β-lactoglobulin and ovalbumin in breast milk. Am. J. Clin. Nutr., 65, 30–5.Google Scholar
  113. Gagnaire, V., Mollé, D., Sorhaug, T. and Léonil, J. (1999) Peptidases of dairy propionic acid bacteria. Lait, 79, 43–57.CrossRefGoogle Scholar
  114. Garcia, T., Martin, R., Morales, P., Gonzalez, I., Sanz, B. and Hernandez, P. (1993) Sandwich ELISA for detection of caprine milk in ovine milk. Milchwissenschaft, 48, 563–6.Google Scholar
  115. Garrett, D.S., Seok, Y.J., Liao, D.I., Peterkofsky, A., Gronenbo, A.M. and Clore, G.M. (1997) Solution structure of the 30 kDa N-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate: sugar phophotransferase system by multidimensional NMR. Biochemistry, 36, 2517–30.CrossRefGoogle Scholar
  116. Gaudillere, T. and Grappin, R. (1982) Influence de l’acide citrique sur le dosage des proteines du lait par la methode infra rouge. Memoire de fin d’tudes. SPILAB, Douai.Google Scholar
  117. Gazzaz, S.S., Rasco, B.A. and Dong, M. (1992) Application of immunochemical assays to food analysis. Crit. Rev. Food Sci. Nutr., 32, 197–229.CrossRefGoogle Scholar
  118. Giangiacomo, R. and Nzabonimpa, R. (1994) Approach to near infrared spectroscopy, Bulletin 298, International Dairy Federation, Brussels, pp. 37–42.Google Scholar
  119. Gin, R.E. and Packard, V.S. (1989) A study of the accuracy of infra red milk component analysis in DHIA laboratories. Dairy Food and Environmental Sanitation, 9, 61–4.Google Scholar
  120. Gonzalez de Llano, D, Polo, C. and Ramos, M. (1990) Update on HPLC and FPLC analysis of nitrogen compounds in dairy products. Lait, 70, 255–77.CrossRefGoogle Scholar
  121. Gonzalez, I., Martin, R., Garcia, T., Morales, P., Sanz, B. and Hernandez, P. (1993) A sandwich enzyme linked immunosorbent assay (ELISA) for detection of Pseudomonas fluorescens and related psychrotrophic bacteria in refrigerated milk. J. Appl. Bacteriol, 74, 394–401.CrossRefGoogle Scholar
  122. Gonzalez, I., Martin, R., Garcia, T., Morales, P., Sanz, B. and Hernandez, P. (1994) Polyclonal antibodies against live cells of Pseudomonas fluorescens for the detection of psychrotrophic bacteria in milk using a double antibody sandwich enzyme-linked immunosorbent assay. J. Dairy Sci., 77, 3552–7.CrossRefGoogle Scholar
  123. Gorg, A., Boguth, G., Obermaier, C, Porsch, A. and Weiss, W. (1995) Two dimensional polyacrylamide gel electrophoresis with immobilized pH gradients in the first dimension (IPG-Dalt): the state of the art and the controversy of vertical versus horizontal systems. Electrophoresis, 16, 1079–86.CrossRefGoogle Scholar
  124. Goulden, J.D.S. (1957) Diffuse reflexion, spectra of dairy products in the near infra red region. J. Dairy Res., 24, 242–51.CrossRefGoogle Scholar
  125. Goulden, J.D.S. (1964) Analysis of milk by infra red absorption. J. Dairy Res., 31, 273–84.CrossRefGoogle Scholar
  126. Grappin, R. (1984) Assessment and optimization of indirect instrumental methods for testing major constituents in milk and dairy products, in, Challenges to Contemporary Dairy Analytical Techniques, The Royal Society of Chemistry, London, pp. 77–90.Google Scholar
  127. Grappin, R. and Horwitz, W. (1988) Determination, of nitrogen content in milk by the Kjeldahl method using copper sulfate: Interlaboratory study. J. Assoc. Off. Anal. Chem., 71, 893–97.Google Scholar
  128. Grappin, R. and Jeunet, R. (1976a) Essai de l’appareil Kjel Foss utilise pour le dosage de l’azote dans le lait. Rev. Lait. Fr., 346, 591–7.Google Scholar
  129. Grappin, R. and Jeunet, R. (1979) Methode de routine pour le dosage de la matière grasse et des proteines du lait de chèvre. Lait, 59, 345–60.CrossRefGoogle Scholar
  130. Grappin, R and Leifer, D. (1995) Protein definition for milk payment to farmers, in, Milk Protein, Definition and Standardization, International Dairy Federation, Brussels, Special Issue, 9502, pp. 16–23.Google Scholar
  131. Grappin, R. and Ribadeau-Dumas, B. (1992) Analytical methods for milk proteins, in Advanced Dairy Chemistry-1 Proteins, 2nd edn, (P.F. Fox ed.) Elsevier Science Publishers Ltd., London, pp. 1–62.Google Scholar
  132. Grappin, R., Jeunet, R. and Roguinsky, M. (1970) Influence de la mammite sur la composition de la matiere azotee des laits de quarters et sur les dosages de matiere axotee par la methode Noir Amido et l’appareil Infra Red Milk Analyser. Lait, 50, 491–510.CrossRefGoogle Scholar
  133. Grappin, R., Jeunet. R. and Le Dore, A. (1979) Determination of the protein content of cows’ and goats’ milk by dye binding and infra red methods. J. Dairy Sci., 62 (Suppl. 1), 38 (abstr.).Google Scholar
  134. Grappin, R., Packard, V.S., Ginn, R.E. and Mellema, J. (1980) Precision of the Pro Milk method in routine determination of protein in dairy testing laboratories. J. Food Prot., 43, 52–3.Google Scholar
  135. Grappin, R., Rank, T.C. and Olson, N.F. (1985) Primary proteolysis of cheese proteins during ripening. A review. J. Dairy Sci., 68, 531–40.CrossRefGoogle Scholar
  136. Green, M.R. and Pastewka, J.V. (1976) Molecular weights of three mouse milk caseins by sodium dodecyl sulfate polyacrylamide gel electrophoresis and κ-like characteristics of a fourth casein. J. Dairy Sci., 59, 1738–45.CrossRefGoogle Scholar
  137. Greenfield, N.J. (1996) Methods to estimate the conformation of proteins and polypeptides from circular dichroism data. Anal. Biochem., 235, 1–10.CrossRefGoogle Scholar
  138. Groen, A.F., van der Vegt, R., van Boekel, M.A.J.S., de Row, O.L.A.D.M. and Vos, H. (1994) Case study on individual animal variation in milk protein composition as estimated by high pressure liquid chromatography. Neth. Milk Dairy J., 48, 201–12.Google Scholar
  139. Guidry, A.J. and Pearson, R.E. (1979) Improved methodology for quantitative determination of serum and milk proteins by single radial immunodiffusion. J. Dairy Sci, 62, 1252–7.CrossRefGoogle Scholar
  140. Guidry; A.J., Paape, M.J. and Pearson, R.E. (1980) Effect of udder inflammation on milk immunoglobulins and phagocytosis. Am. J. Vet. Res., 41, 751–3.Google Scholar
  141. Guillou, H., Miranda. G. and Pelissier, J.P. (1987) Analyse quantitative des caseines dans le lait de vache par Chromatographie liquide rapide d’echange d’ions (FPLC). Lait, 67, 135–48.CrossRefGoogle Scholar
  142. Gupta, B.B. (1983) Determination of native and denatured milk proteins by high performance size exclusion chromatography. J. Chromatogr., 282, 463–75.CrossRefGoogle Scholar
  143. Gutierrez, R., Gonzalez, I., Garcia, T., Carrera, E., Sanz, B., Hernandez, P.E. and Martin, R. (1997) Monoclonal antibodies and an indirect ELISA for detection of psychrotrophic bacteria in refrigerated milk. J. Food Prot., 60, 64–6.Google Scholar
  144. Haga, M., Yamauchi, K. and Aoyagi, S. (1983) Conformation and some properties of bovine αS2 group casein. Agric. Biol. Chem., 47, 1467–71.CrossRefGoogle Scholar
  145. Hall, J.W. and Chan, K. (1993) Near infrared spectroscopic analysis of bovine milk for fat, protein and lactose, in Cheese Yield and Factors Affecting its Control Special Issue, 9402, International Dairy Federation, Brussels, pp. 230–9.Google Scholar
  146. Haque, Z.U. and Pruett, S.B. (1993) Development of an enzyme linked immunoassay for β-lactoglobulin in dairy products. Cultured Dairy Products J., 28, 23–4.Google Scholar
  147. Haza, A.I., Morales, P., Martin, R., Garcia, T., Anguita, G., Gonzalez, I., Sanz, B. and Hernandez, P.E. (1996) Development of monoclonal antibodies against caprine αS2-casein and their potential for detecting the substitution of ovine milk by caprine milk by an indirect ELISA. J. Agric. Food Chem., 44, 1756–61.CrossRefGoogle Scholar
  148. Haza, A.I., Morales, P., Martin, R., Garcia, T., Anguita, G., Gonzalez, I., Sanz, B. and Hernandez, P.E. (1997) Use of a monoclonal antibody and two enzyme linked immunosorbent assay formats for detection and quantification of the substitution of caprine milk for ovine milk. J. Food Prot., 60, 973–7.Google Scholar
  149. Hetherington, S.V., Spitznagel, J.K. and Quie, P.G. (1983) An ELISA for measurement of lactoferrin. J. Immunol. Meth., 65, 183–90.CrossRefGoogle Scholar
  150. Hewavitharana, A.K. and van Brakel, B. (1997) Fourier transform infrared spectrometric method for the rapid determination of casein in raw milk. Analyst, 122, 701–4.CrossRefGoogle Scholar
  151. Hewedy, M.M. and Smith, C.J. (1990) Modified immunoassay for the detection of soy milk in pasteurized skimmed bovine milk. Food Hydrocolloids, 3, 485–90.CrossRefGoogle Scholar
  152. Hiesberger, J. and Brandi, E. (1997) Erprobung eines kommerziell erhältlichen für den Sojanachweis in Fleisch bestimmten ELISA Verfahrens auf seine Anwendbarkeit für Milch und Tofu Topfen Gemische. Ernaehrung, 21, 314–7.Google Scholar
  153. Hollar, CM., Law, A.J.R., Dalgleish, D.G., Medrano, J.F. and Brown, R.J. (1991) Separation of β-casein A1, A2 and B using cation exchange fast protein liquid chromatography. J. Dairy Sci., 74, 3308–13.CrossRefGoogle Scholar
  154. Holt, C. and Sawyer, L. (1993) Caseins as rheomorphic proteins: interpretation of primary and secondary structures of the αS2-, β-and κ-caseins. J. Chem. Soc. Faraday Trans., 89, 2683–92.CrossRefGoogle Scholar
  155. Holt, C, McPhail, D., Nevison, I., Nylander, T., Otte, J., Ipsen, R.H., Bauer, R., Øgendal, L., Olieman, K., de Kruif, K.G., Léonil, I., Mollé, D., Henry, G., Maubois, J.L., Pérez, M.D., Puyol, P., Calvo, M., Bury, S.M., Kontopidis, G., McNae, I., Sawyer, L., Ragona, L., Zetta, L., Molinari, H., Klarenbeek, B., Jonkman, M.J., Moulin, J. and Chatterton, D. (1999) Apparent chemical composition of nine commercial or semi-commercial whey protein concentrates, isolates and fractions. Int. J. Food Sci. Technol., 34, 543–56.CrossRefGoogle Scholar
  156. Honkanen Buzalski, T. and Sandholm, M. (1981) Trypsin inhibitors in mastitic milk and colostrum: correlation between trypsin inhibitor capacity, bovine serum albumin and somatic cell contents. J. Dairy Res., 48, 213–23.CrossRefGoogle Scholar
  157. Hoyer, H. (1997) NIR on line analysis in the food industry. Process Control and Quality, 9, 143–52.Google Scholar
  158. Hruschka, A.W.R. (1987) Data analysis: wavelength selection methods, in Near Infrared Technology in the Agriculture and Food Industries, (P.C. Williams and K.H. Norris eds.) American Association of Cereal Chemists: St. Paul, MN, pp. 35–55.Google Scholar
  159. Humbert, G., Collard, Bovy, C, Marchai, E., Linden, G., Montagne, P., Duheille, J. and Varcin, P. (1991) Microparticle enhanced nephelometric immunoassay. Application to milk and dairy products. J. Dairy Sci., 74, 3709–15.CrossRefGoogle Scholar
  160. Humphrey, R. (1984) Whey proteins, in Handbook of HPLC for the Separation of Amino Acids, Peptides and Proteins, Vol. 2, (W.S. Hancock ed.) CRC Press, Boca Raton, FL, pp. 471–8.Google Scholar
  161. Humphrey, R.S. and Newsome, L.J. (1984) High performance ion exchange chromatography of the major bovine milk proteins. N.Z. J. Dairy Sci. Technol., 19, 197–204.Google Scholar
  162. IDF (1964) Internationl Standard 29, Determination of the casein content of milk, International Dairy Federation, Brussels.Google Scholar
  163. IDF (1985) International Standard 98A, Determination of protein content: Amido Black dye binding method, International Dairy Federation, Brussels.Google Scholar
  164. IDF (1987) Monograph on rapid indirect methods for measurement of the major components of milk, Bulletin 2018, International Dairy Federation, Brussels.Google Scholar
  165. IDF (1993) Provisional Standard 20B, Milk, Determination of nitrogen content (Kjeldahl method) International Dairy Federation, Brussels.Google Scholar
  166. IDF (1996) Whole milk: Determination of milk fat, protein and lactose content. Guide for the operation of Mid Infrared instruments, Standard 141 B, International Dairy Federation, Brussels.Google Scholar
  167. IDF (1999) Composantes azotées dans le lait et les produits laitiers. E Doc 705, International Dairy Federation, Brussels.Google Scholar
  168. IDF (2000) Provisional Standard 185. Milk and dairy products. Determination of nitrogen: method by combustion according to the Dumas principle, International Dairy Federation, Brussels.Google Scholar
  169. Inglis, A.S. (1991) Chemical procedures for C-terminal sequencing of peptides and proteins. Anal. Biochem., 195, 183–96.CrossRefGoogle Scholar
  170. Jackson, M. and Mantsch, H.H. (1995) The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit. Rev. Biochem. Mol. Bioi, 30, 95–120.CrossRefGoogle Scholar
  171. Jakobsson, I. and Lindberg, T. (1979) A prospective study of cow’s milk allergy in Swedish infants. Acta Paediatr. Scand., 68, 853–59.CrossRefGoogle Scholar
  172. Jeanson, S., Dupont, D., Grattard, N. and Rolet-Repecaud, O. (1999) Characterization of the heat treatment undergone by milk using two inhibition ELISAs for quantification of native and heat denatured α-lactalbumin. J. Agric. Food Chem., 47, 2249–54.CrossRefGoogle Scholar
  173. Jeunet, R. and Grappin, R. (1985) Evaluation de l’Infralyser Dairy pour le dosage des principaux constituants du lait. Tech. Lait, 1003, 53–8.Google Scholar
  174. Kamishikiryo, Yamashita, H., Oritani, Y., Takamura, H. and Matoba, T. (1994) Protein content in milk by near infrared spectroscopy. J. Food Sci., 59, 313–5.CrossRefGoogle Scholar
  175. Kane, P.F. (1984) Comparison of HgO and CuSO4 as digestion catalysts in manual Kjeldahl determination of crude protein in animal feeds: collaborative study. J. Assoc. Off. Anal. Chem., 67, 869–77.Google Scholar
  176. Karas, M. and Hillenkamp, F. (1988) Laser desorption ionization of proteins with molecular masses exceeding 10 000 daltons. Anal. Chem., 60, 2299–301.CrossRefGoogle Scholar
  177. Karasch, U. (1986) Determination of Constituents of Milk Products with an Infra Red Laboratory Instrument. Thesis, Justus Liebig Universitat, Giessen, Germay Cited from Dairy Sci. Abst., 48, 881.Google Scholar
  178. Karman, A.H. and Van Boekel, M.A.J.S. (1986) Evaluation of the Kjeldahl factor for conversion of the nitrogen content of milk and milk products to protein content. Neth. Milk Dairy J., 40 315–36.Google Scholar
  179. Karman, A.H., van Boekel, M.A.J.S. and Arentsen Stasse, A.P. (1987) A simple rapid method to determine the casein content of milk by infrared spectrophotometry. Neth. Milk Dairy J., 41, 175–87.Google Scholar
  180. Kawasaki, T., Ikeda, K., Takahashi, S. and Kuboki, Y. (1986) Further study of hydroxyapatite high performance liquid chromatography using both proteins and nucleic acids and a new technique to increase Chromatographic efficiency. Eur. J. Biochem., 155, 249–57.CrossRefGoogle Scholar
  181. Kilshaw, P. and Cant, A.J. (1984) The passage of maternal dietary proteins into human breast milk. Int. Arch. Allergy Appl. Immunol., 75, 8–15.CrossRefGoogle Scholar
  182. King-Brink, M. and Sebranek, J. (1993) Combustion method for determination of crude protein in meat and meat products collaborative study. J. Assoc. Off. Anal. Chem., 76, 787–93.Google Scholar
  183. King-Brink, M. and Sebranek, J. (1995) Preliminary findings reported at the 109th Annual Meeting of AOAC, International, Nashville, TN cited from Wiles et al. (1998).Google Scholar
  184. Kobayashi, T., Ohmori, T., Yanai, M., Kawanishi, G., Yoshikai, Y. and Nomoto, K. (1991) Protective effect of orally administering immune milk on endogenous infection in X irradiated mice. Agric. Biol Chem., 55, 2265–72.CrossRefGoogle Scholar
  185. Köhler, G. and Milstein, C. (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 256, 495–7.CrossRefGoogle Scholar
  186. Kummer, A., Kitts, D.D., Li Chan, E., Losso, J.N., Skura, B.J. and Nakai, S. (1992) Quantification of bovine IgG in milk using enzyme linked immunosorbent assay. Food Agric. Immunol., 4, 93–102.CrossRefGoogle Scholar
  187. Kumosinski, T.F. and Farrell, H.M., Jr. (1993) Determination of the global secondary structure of protein by Fourier Transform Infrared (FTIR) spectroscopy. Trends Food Sci. Technol, 4, 169–75.CrossRefGoogle Scholar
  188. Laan, H., Haverkort, R.E., De Leij, L. and Konings, W. (1996) Detection and localization of peptidases in Lactococcus lactis with monoclonal antibodies. J. Dairy Res., 63, 245–56.CrossRefGoogle Scholar
  189. Lacroix, C, Verret, P. and Paquin, P. (1996) Regional and seasonal variations of nitrogen fractions in commingled milk. Int. Dairy J., 6, 947–61.CrossRefGoogle Scholar
  190. Lakin, A.L. (1974) A rapid method for estimating total protein in milk. Proc 19th Int. Dairy Congr. (New Delhi), Short Commun. LF, 303–4.Google Scholar
  191. Lanher, B.S. (1996) Evaluation of Aegys MI600 Fourier transform infrared milk analyzer for analysis of fat, protein, lactose and solids nonfat: a compilation of eight independent studies. J. Assoc. Off. Anal. Chem. Int., 79, 1388–99.Google Scholar
  192. Laporte, M.F. and Paquin, P. (1998a) Near infrared technology and dairy food products analysis: a review. Seminars in Food Analysis, 3, 173–90.Google Scholar
  193. Laporte, M.F. and Paquin, P. (1998b) The near infrared optic probe for monitoring rennet coagulation in cow’s milk. Int. Dairy J., 8, 659–66.CrossRefGoogle Scholar
  194. Laporte, M F. and Paquin, P. (1999) Near infrared analysis of fat, protein and casein in cow’s milk. J. Agri. Food. Chem., 47, 2600–5.CrossRefGoogle Scholar
  195. Larsen, L.B. and Petersen, T. (1995) Identification of five molecular forms of cathepsin D in bovine milk, in Aspartic Proteinases: Structure, Function, Biology and Biomedical Implications, (K. Takahashi ed.) Plenum press, New York, pp. 279–84.Google Scholar
  196. Larsen, L.B., Benfeldt, C, Rasmussen, L.K. and Petersen, T.E. (1996) Bovine milk procathepsin D and cathepsin D: coagulation and milk protein degradation. J. Dairy Res., 63, 119–30.CrossRefGoogle Scholar
  197. Laurell, C.B. (1966) Quantitative estimation of proteins by electrophoresis in agarose gel containing antibodies. Anal. Biochem., 15, 45–52.CrossRefGoogle Scholar
  198. Law, A.J.R. (1993) Quantitative examination of genetic polymorphism in κ-and β-caseins by anion and cation exchange FPLC. Milchwissenschaft, 48, 243–7.Google Scholar
  199. Le Magnen, C, Rainard, P., Maubois, J.L., Paraf, A. and Phan Thanh, L. (1989) Dosage de la lactoferrine bovine par les techniques immunoenzymatiques (ELISA). Lait, 69, 23–32.CrossRefGoogle Scholar
  200. Lee, S.J., Leon, I.J. and Harbers, L.H. (1997) Near infrared reflectance spectroscopy for rapid analysis of curds during Cheddar cheese making. J. Food Sci., 62, 53–6.CrossRefGoogle Scholar
  201. Lefier, D. (1998) Application of Fourier transform infrared spectroscopy in milk and milk product analysis. A literature survey, Bulletin 332, International Dairy Federation, Brussels, pp. 54–7.Google Scholar
  202. Lefier, D, Grappin, R. and Pochet, S. (1996) Determination of fat, protein and lactose in raw milk by Fourier Transform infrared spectroscopy and by analysis with a conventional filter based milk analyzer. J. Assoc. Off. Anal. Chem. Int., 79, 711–7.Google Scholar
  203. Léonil, J., Mollé, D., Gaucheron, F., Arpino, P., Guenot, P., and Maubois, J.L. (1995) Analysis of major bovine milk proteins by on line high performance liquid chromatography and electrospray ionization mass spectrometry. Lait, 75, 193–210.CrossRefGoogle Scholar
  204. Léonil, J., Mollé, D., Fauquant, J., Maubois, J.L., Pearce, R.J. and Bouhallab, S. (1997) Characterization by ionization mass spectrometry of lactosyl β-lactoglobulin conjugates formed during heat treatment of milk and whey and identification of one lactose binding site. J. Dairy Sci., 80, 2270–81.CrossRefGoogle Scholar
  205. Levieux, D. (1980) Heat denaturation of whey proteins comparative studies with physical and immunological methods. Ann. Rech. Vet., 11, 89–97.Google Scholar
  206. Levieux, D. (1991) Dosage des IgG du lait de vache par immunodiffusion radiale semi automatisée, pour la détection du colostrum, des laits de mammites ou de fin de gestation. I. Mise au point du dosage. Lait, 71, 327–38.CrossRefGoogle Scholar
  207. Levieux, D. and Oilier, A. (1999) Bovine immunoglobulin G, β-lactoglobulin, α-lactalbumin and serum albumin in colostrum and milk during the early post-partum period. J. Dairy Res., 66, 421–30.CrossRefGoogle Scholar
  208. Levieux, D. and Venien, A. (1994) Rapid, sensitive two-site ELISA for detection of cows’ milk in goats’ or ewes’ milk using monoclonal antibodies. J. Dairy Res., 61, 91–9.CrossRefGoogle Scholar
  209. Li Chan, E. and Kummer, A. (1997) Influence of standards and antibodies in immunochemical assays for quantitation of immunoglobulin G in bovine milk. J. Dairy Sci., 80, 1038–46.CrossRefGoogle Scholar
  210. Lindeberg, J. (1996) Capillary electrophoresis in food analysis. Food Chem., 55,73–94.CrossRefGoogle Scholar
  211. Loeffler, D.A. and Norcross, N.L. (1985) Enzyme-linked immunosorbent assay for detection of milk immunoglobulins to leukocidin toxin of Staphylococcus aureus. Am. J. Vet. Res., 46, 1728–32.Google Scholar
  212. Losso, J.N., Kummer, A., Li Chan, E. and Nakai, S. (1993) Development of a particle concentration fluorescence immunoassay for the quantitative determination of IgG in bovine milk. J. Agric. Food Chem., 41, 682–6.CrossRefGoogle Scholar
  213. Loucheux Lefebvre, M.H., Auber, J.P. and Jolies, P. (1978) Prediction of the conformation of the cow and sheep κ-caseins. Biophys. J., 23, 323–36.CrossRefGoogle Scholar
  214. Luinge, H.J., Hop, E., Lutz, T.T.G., van Hemert, J.A. and de Jong, E.A.M. (1993) Determination of fat, protein and lactose content in milk using Fourier transform infrared spectrometry. Anal. Chim. Acta, 284, 419–33.CrossRefGoogle Scholar
  215. Lynch, M.J., Barbano, D.M. and Fleming, J.R. (1995) Evaluation of commercially available milk powders for calibration of mid infrared analyzer. J. Assoc. Anal. Chem. Int., 78, 1219–24.Google Scholar
  216. Lynch, M.J., Barbano, D.M. and Fleming, J.R. (1998) Indirect and direct determination of the casein content of milk by Kjeldahl nitrogen analysis: Coallaborative study. J. Assoc. Off. Anal. Chem. Int., 81, 763–74.Google Scholar
  217. Makinen Kiljunen, S. and Palosuo, T. (1992) A sensitive enzyme linked immunosorbent assay for determination of bovine β-lactoglobulin in infant feeding formulas and in human milk. Allergy, 47, 347–52.CrossRefGoogle Scholar
  218. Malhotra, B.P. and Kapur, M.P (1983) Radial immunodiffusion test for the diagnosis of bovine subclinical mastitis. Ind. J. Exp. Biol., 21, 81–3.Google Scholar
  219. Mancini, G., Carbonara, A.O. and Heremans, J.F. (1965) Immunochemical quantitation of antigens by single radial immunodiffrusion. Immunochemistry, 2, 235–54.CrossRefGoogle Scholar
  220. Manji, B., Hill, A., Kakuda, Y. and Irvine, D.M. (1985) Rapid separation of milk whey proteins by anion exchange chromatography. J. Dairy Sci., 68, 3176–9.CrossRefGoogle Scholar
  221. Mann, M. and Wilm, M. (1995) Electrospray mass spectrometry for protein characterization. TIBS, 20, 219–24.Google Scholar
  222. Marchai, E. (1994) Immunonéphélémétrie Microparticulaire: Système Protéolytique du Plasminogène dans le Sang Humain et le lait Bovin. PhD Thesis, University of Nancy, France.Google Scholar
  223. Marchai, E., Collard Bovy, C, Humbert, G., Linden, G., Montagne, P., Duheille, J. and Varcin, P. (1991) Microparticle enhanced nephelometric immunoassay. 2. Measurement of α-lactalbumin and β-lactoglobulin. J. Dairy Sci., 74, 3702–8.CrossRefGoogle Scholar
  224. Marchai, E., Haissat, S., Montagne, P., Cuilliere, M.L., Bene, M.C., Faure, G., Humbert, G. and Linden, G. (1995) Microparticle enhanced nephelometric immunoassay of plasminogen in bovine milk. Food Agric. Immunol., 7, 323–31.CrossRefGoogle Scholar
  225. Marshall, K.R. (1995) Protein standardization of milk products, in Milk Protein Definition and Standardization, 2nd IDF Symposium, 22-24 June 1994, Aarhus, Denmark, pp. 49–54.Google Scholar
  226. Marsilio, R., Catinella, S., Seraglia, R. and Traldi, P. (1995) Matrix assisted laser desorption/ionization mass spectrometry for the rapid evaluation of thermal damage in milk. Rapid Commun. Mass Spectrom., 9, 550–2.CrossRefGoogle Scholar
  227. McGann, T.C.A. (1978) Automated physico chemical methods for the analysis of milk. A review of major advances (1960-1978). Irish. J. Food Sci. Technol., 2,141–56.Google Scholar
  228. McLean, D.M., Graham, E.R.B. and McKenzie, H.A. (1982) Estimation of casein components by gel electrophoresis. Proc. 21st Intern. Dairy Congr., Moscow. Vol 1(book 2), 221 (abstr.).Google Scholar
  229. McLean, D.M., Graham, E.R.B. and Ponzoni, R.W. (1984) Effect of milk protein genetic variants on milk yield and composition. J. Dairy Res., 51, 531–46.CrossRefGoogle Scholar
  230. McSweeney, P.H. and Fox, P.F. (1997) Chemical methods for the characterization of proteolysis in cheese during ripening. Lait, 77, 4176.CrossRefGoogle Scholar
  231. Medrano, J.F. and Sharrow, L. (1989) Milk protein typing of bovine mammary gland tissue used to generate a complementary deoxyribonucleic acid library. J. Dairy Sci., 72, 3190–6.CrossRefGoogle Scholar
  232. Miranda, G. (1983) Etude Cinetique de la Proteolyse in vivo des Lactoproteines Bovines dans l’Estomac du Rat: Effet du Traitement Thermique. Thesis, University of Paris VII.Google Scholar
  233. Moio, L., Chianese, L., Rivemale, M. and Addeo, F. (1992) Fast detection of bovine milk in Roquefort cheese with Phast System by gel isoelectric focusing and immunoblotting. Lait, 72, 87–93.CrossRefGoogle Scholar
  234. Molina, E., Fernandez Fournier, A., De Frutos, M. and Ramos, M. (1996) Western blotting of native and denatured bovine β-lactoglobulin to detect addition of bovine milk in cheese. J. Dairy Sci., 79, 191–7.CrossRefGoogle Scholar
  235. Molinari, H., Ragona, L., Varani, L., Musco, G., Consonni, R., Zetta, L. and Monaco, H.L. (1996) Partially folded structure of monomeric bovine β-lactoglobulin. FEBS Lett., 381, 237–43.CrossRefGoogle Scholar
  236. Montagne, P., Cuillière, M.L., Marchai, E., El Bari, N., Montagne, M., Benali, M., Faure, G., Duheille, J., Humbert, G., Linden, G., Heurtaux, N., Blesche, J.L., Gosselin, D., Desmares, A. and Delahaye, D. (1995) Application des dosages par immunonéphélémétrie microparticulaire des caséines α, β et κ à l’évaluation de la qualité du lait, de sa production à sa valorisation fromagère. Lait, 75, 211–37.CrossRefGoogle Scholar
  237. Montagne, P., Gavriloff, C, Humbert, G., Cuillière, M.L., Duheille, J. and Linden, G. (1991) Microparticle enhanced nephelometric immunoassay for immunoglobulins G in cow’s milk. Lait, 71, 493–99.CrossRefGoogle Scholar
  238. Narayanan, L, Prakash, K., Verna, R.K. and Gujral, V.V. (1983) Administration of colostrum for the prevention of infection in the low birth weight infant in a developing country. J. Trop. Paediatr., 29, 197–202.CrossRefGoogle Scholar
  239. Negroni, L., Bernard, H., Clement, G., Chatel, J.M., Brune, P., Frobert, Y., Wal, J.M. and Grassi, J. (1998) Two site enzyme immunometric assays for determination of native and denatured β-lactoglobulin. J. Immunol. Meth., 220, 25–37.CrossRefGoogle Scholar
  240. Newstead, D.F. (1976) Carotene and immunoglobulin concentrations in the colostrum and milk of pasture-fed cows. J. Dairy Res., 43, 229–37.CrossRefGoogle Scholar
  241. Osborne, B.G., Fearn, T. and Hindle, P.H. (1993) Practical NIR Spectroscopy with Applications in Food and Beverage Analysis. Longman Scientific and Technical, England.Google Scholar
  242. Oschkinat, H., Griesinger, C, Kraulis, P.J., Sorensen, O.W., Ernst, R.J.L., Gronenborn, A.M. and Clore, G.M. (1988) Three dimensional NMR spectroscopy of a protein in solution. Nature, 332, 374–6.CrossRefGoogle Scholar
  243. Otte, J.A.H.J., Kristiansen, K.R., Zakora, M. and Qvist, K.B. (1994) Separation of individual whey proteins and measurement of α-lactalbumin and β-lactoglobulin by capillary zone electrophoresis. Neth. Milk Dairy J., 48, 81–97.Google Scholar
  244. Otte, J., Zakora, M., Kristiansen, K.R. and Qvist, K.B. (1997) Analysis of bovine caseins and primary hydrolysis products in cheese by capillary zone electrophoresis. Lait, 77, 241–57.CrossRefGoogle Scholar
  245. Paganelli, R. and Levinsky, R.J. (1980) Solid phase radioimmunoassay for detection of circulating food protein antigens in human serum. J. Immunol. Meth., 37, 333–41.CrossRefGoogle Scholar
  246. Pailler, F. (1982) Dosage apres mineralisation des protines par electrode specifique de l’ion ammonium. Comparaison avec la methode Kjeldahl. Application aux denrées alimentaires. Ann. Fulsif. Expert. Chim. Toxicol., 75, 431–9.Google Scholar
  247. Payne, F.A., Hicks, C.L., Madangopal, S. and Shearer. S. (1993) Predicting optimal cutting time of coagulating milk using diffuse reflectance. J. Dairy. Sci., 76, 48–61.CrossRefGoogle Scholar
  248. Pearce, R.J. (1983) Analysis of whey proteins by high performance liquid chromatography. Aust. J. Dairy Technol., 38, 114–7.Google Scholar
  249. Parris, N. and Baginski, M.A. (1991) A rapid method for the determination of whey protein denaturation. J. Dairy Sci., 74, 58–64.CrossRefGoogle Scholar
  250. Parris, N. and Purcell, J.M. (1990) Examination of thermal denaturation of whey proteins in milk by RP HPLC and FTIR. J. Dairy Sci., 73, suppl. 1, 106. (abstr).Google Scholar
  251. Paterson, G.R., Otter, D.E. and Hill, J.P. (1995) Applications of capillary electrophoresis in the identification of phenotypes containing the β-lactoglobulin C variant. J. Dairy Sci., 78, 2637–44.CrossRefGoogle Scholar
  252. Pearce, R.J. (1983) Analysis of whey proteins by high performance liquid chromatography. Aust. J. Dairy Technol., 38, 114–7.Google Scholar
  253. Pearce, R.J. and Shanley, R M. (1981) Analytical and preparative separation of whey proteins by chromatofocusing. J. Dairy Technol., 36, 110–4.Google Scholar
  254. Penhole, W.J. and Christie, G. (1969) Quantitative studies on bovine immunoglobulins. Adult plasma and colostrum levels. Res. Vet. Sci., 10, 493–501.Google Scholar
  255. Picard, C, Plard, I., Rongdaux Gaida, D. and Collin, J.C. (1994) Detection of proteolysis in raw milk stored at low temperature by an inhibition ELISA. J. Dairy Res., 61, 395–404.CrossRefGoogle Scholar
  256. Pizzano, R., Nicolai, M.A. and Addeo, F. (1997) Antigenicity of the 139-149 αS1-casein region in different species revealed by ELISA and immunoblotting using antipeptide antibodies. J. Agric. Food Chem., 45, 2807–13.CrossRefGoogle Scholar
  257. Pizzano, R., Nicolai, M.A. and Addeo, F. (1998) Antipeptide antibodies as analytical tools to discriminate among bovine αS1-casein components. J. Agric. Food Chem., 46, 766–71.CrossRefGoogle Scholar
  258. Pouliot, M., Paquin, P., Richard, M., Gauthier, S.F. and Pouliot, Y. (1997) Whey changes during processing determined by near infrared spectroscopy. J. Food Sci., 62, 475–9.CrossRefGoogle Scholar
  259. Poutrel, B., Caffin, J.P. and Rainard, P. (1983) Physiological and pathological factors influencing bovine serum albumin content of milk. J. Dairy Sci., 66, 535–41.CrossRefGoogle Scholar
  260. Prestrelski, S.I., Byler, D.M. and Thompson, M.P. (1991) Infrared spectroscopic discrimination between alpha and 310 helices in globular proteins. Reexamination of amide I infrared bands of alpha lactalbumin and their assignment to secondary structures. Int. J. Peptide Prot. Res., 37, 508–12.CrossRefGoogle Scholar
  261. Prin, C, El Bari, N., Montagne, P., Cuilliere, M.L., Bene, M.C., Faure, G., Humbert, G. and Linden G. (1996) Microparticle enhanced nephelometric immunoassay for caseinomacropeptide in milk. J. Dairy Res., 63, 73–81.CrossRefGoogle Scholar
  262. Raap, J., Kerling, K.E.T., Vreeman, H.J. and Visser, S. (1983) Peptide substrates for chymosin (rennin): conformational studies of κ-casein and some κ-casein-related oligopeptides by circular dichroism and secondary structure prediction. Arch. Biochem. Biophys., 221, 117–24.CrossRefGoogle Scholar
  263. Ragona, L., Pustula, F., Zetta, L., Monaco, H.L. and Molinari, H. (1997) Identification of a conserved hydrophobic cluster in partially folded bovine β-lactoglobulin at pH 2. Folding and Design, 2, 281–90.CrossRefGoogle Scholar
  264. Rauch, P., Hochel, I., Berankova, E. and Kas, J. (1989) Sandwich enzyme immunoassay of Mucor miehei proteinase (Fromase) in cheese. J. Dairy Res., 56, 793–7.CrossRefGoogle Scholar
  265. Recio, I. and Olieman, C. (1996) Determination of denatured serum proteins in the casein fraction of heat treated milk by capillary zone electrophoresis. Electrophoresis, 17, 1228–33.CrossRefGoogle Scholar
  266. Recio, I., Pérez Rodríguez, M.L., Ramos, M. and Amigo, L. (1997a) Capillary electrophoretic analysis of genetic variants of milk proteins from different species. J. Chromatogr. A, 768, 47–56.CrossRefGoogle Scholar
  267. Recio, L., Pérez Rodriguez, M.L., Amigo, L. and Ramos, M. (1997b) Study of the polymorphism of caprine milk caseins by capillary electrophoresis. J. Dairy Res., 64, 515–23.CrossRefGoogle Scholar
  268. Recio, I., Amigo, L. and Lopez Fandino, R. (1997c) Assessment of the quality of dairy products by capillary electrophoresis of milk proteins. J. Chromatogr. B, 697, 231–42.CrossRefGoogle Scholar
  269. Rexroad, P.R. and Cathey, R.D. (1976) Pollution reduced Kjeldahl method for crude protein. J. Assoc. Off. Anal. Chem., 59, 1213–7.Google Scholar
  270. Reynolds, J.A. and Tanford, C. (1970) The gross conformation of protein sodium dodecyl sulfate complexes. J. Biol. Chem., 245, 5161–5.Google Scholar
  271. Richter, W., Krause, I., Graf, C, Sperrer, I., Schwarzer, C. and Klostermeyer, H. (1997) An indirect competitive ELIS A for the detection of cows’ milk and caseinate in goats’ and ewes’ milk and cheese using polyclonal antibodies against bovine γ-caseins. Z. Lebensm. Unters. Forsch., 204, 21–6.CrossRefGoogle Scholar
  272. Robert, P., Bertrand, D., Daux, M.F. and Grappin, R. (1987) Multivariate analysis applied to near infra red spectra of milk. Anal. Chem., 59, 2187–91.CrossRefGoogle Scholar
  273. Robertson, N.H. and van der Westhuizen, E. (1990) Non-protein nitrogen content of milk as influenced by various factors S. Afr. J. Dairy Sci., 22, 1–18.Google Scholar
  274. Rodbard, D., Kapadia, G. and Chrombach, A. (1971) Pore gradient electrophoresis. Anal. Biochem., 40, 135–57.CrossRefGoogle Scholar
  275. Roeper, J. and Dolby, R.M. (1971) Estimation of the protein content of wheys by the Amido Black method. N.Z. J. Dairy Sci. Technol., 6, 65–8.Google Scholar
  276. Rodriguez Otero, J.L. and Hermida, M. (1996) Analysis of fermented milk products by near infrared reflectance spectroscopy. J. Assoc. Off. Anal. Chem. Int., 79, 817–21.Google Scholar
  277. Rodriguez Otero, J.L., Hermida, M. and Cepada, A. (1995) Determination of fat protein and total solids in cheese by near infrared reflectance spectroscopy. J. Assoc. Off. Anal. Chem. Int., 78, 802–6.Google Scholar
  278. Rodriguez Otero, J.L., Hermida, M. and Centeno, J. (1997a) Analysis of dairy products by near infrared spectroscopy: a review. J. Agric. Food. Chem., 45, 2815–9.CrossRefGoogle Scholar
  279. Rodriguez Otero, J.L., Centeno, J.A. and Hermida, M. (1997b) Application of near infrared transflectance spectroscopy to the analysis of fermented milks. Milchwissenschaft, 52, 196–9.Google Scholar
  280. Rollema, H.S., McKellar, R.C., Sorhaug, T., Suhren, G., Zadow, J.G., Law, B.A., Poll, J.K., Stepaniak, L. and Vagias, G. (1989) Comparison of different methods for the detection of bacterial proteolytic enzymes in milk. Milchwissenschaft, 44, 491–6.Google Scholar
  281. Rowland, S.J. (1938) The determination of the nitrogen distribution in milk. J. Dairy Res., 9, 42–6.CrossRefGoogle Scholar
  282. Rudzik, L. (1985) MIR NIR ein Methodenvergleich. Deutsche Milchwirschaft, 8, 225–8.Google Scholar
  283. Sachen, R.W. and Thiex, N. (1997) Effect of sample introduction and atmospheric blank on determination of nitrogen (crude protein) by combustion. J. Assoc. Off. Anal. Chem. Int., 80, 14–9.Google Scholar
  284. Samarajeewa, U., Wei, C.I., Huang, T.S. and Marshall, M.R. (1991) Application of immunoassay in the food industry. Crit. Rev. Food Sci. Nutr., 29, 403–34.CrossRefGoogle Scholar
  285. Saputra, D., Payne, F.A. and Hick, C.L. (1994) Analysis of enzymatic hydrolysis of κ-casein in milk using diffuse reflectance of near infrared radiation. Transaction ASAE, 37, 1947–55.Google Scholar
  286. Sato, T., Yoshino, M., Furukawa, S., Somey, Y., Yano, N., Uozumi, J. and Iwamoto, W. (1987) Analysis of milk constituents by the near infra red spectrophotometric method. Jpn. J. Zootech. Sci., 58, 698–706.Google Scholar
  287. Scherrer, R. and Bernard, S. (1977) Application d’une méthode immunoenzymologique (ELISA) à la détection du rotavirus bovin et des anticorps dirigés centre lui. Ann. Microbiol, (Institut Pasteur), 128A, 499–510.Google Scholar
  288. Schmilovitch, Z., Maltz, E. and Austerweil, M. (1992) Determination of milk by NIR spectroscopy, American Society of Agricultural Engineers Meeting, Paper #927054, Michigan, USA.Google Scholar
  289. Schober, R. and Hetzel, H.F. (1956) Uber ein einfache, kolorimetrische Bestimmung von Milchproteinen. Milchwissenschaft, 11, 123–6.Google Scholar
  290. Seibert, B., Erhardt, G. and Senft, B. (1985) Procedure for simultaneous phenotyping of genetic variants in cow’s milk by using isoelectric focusing. Anim. Blood Groups Biochem. Genet., 16, 183–91.CrossRefGoogle Scholar
  291. Shalabi, S.I. and Fox, P.F. (1987) Electrophoretic analysis of cheese: comparison of methods. Irish J. Food Sci. Technol., 11, 135–51.Google Scholar
  292. Shapiro, A.L., Vinuela, E. and Maizel, J.V. (1967) Molecular weight estimation of polypeptide chains by electrophoresis in SDS polyacrylamide gels. Biochem. Biophys. Res. Commun., 28, 815–20.CrossRefGoogle Scholar
  293. Sherbon, J.W. (1975) Collaborative study of the Pro Milk method for the determination of protein in milk. J. Assoc. Off. Anal. Chem., 58, 770–6.Google Scholar
  294. Sherbon, J.W. (1978) Recent developments in determining protein content of dairy products by dye binding. J. Dairy Sci., 61, 1274–78.CrossRefGoogle Scholar
  295. Sherbon, J.W. and Luke, H.A. (1968) Collaborative study of the dye binding method applied to chocolate milk drinks, cultured buttermilk and half and half. J. Assoc. Off. Anal. Chem., 51, 811–6.Google Scholar
  296. Sherbon, J.W. and Luke, H.A. (1969) Comparison of the dye binding and Kjeldahl methods for protein analysis of non-fat dry milk and ice cream. J. Assoc. Off. Anal. Chem., 52, 138–42.Google Scholar
  297. Shimazaki, K. and Sukegawa, K. (1982) Chromatographie profiles of bovine milk whey components by gel filtration. J. Dairy Sci., 65, 2055–62.CrossRefGoogle Scholar
  298. Shinmoto, H., Kobori, M., Tsushida, T. and Shinohara, K. (1997) Competitive ELISA of bovine lactoferrin with bispecific monoclonal antibodies. Biosci. Biotechnol. Biochem., 61, 1044–6.CrossRefGoogle Scholar
  299. Simonne, A.H., Simonne, E.H., Eitenmiller, R.R., Mills, H.A. and Cresman, C.P., III. (1997) Could the Dumas method replace the Kjeldahl digestion for nitrogen and crude protein determination in foods? J. Sci. Food Agric., 73, 39–45.CrossRefGoogle Scholar
  300. Sjaunja, L.O. (1982) Studies on milk analyses of individual cow milk samples. Report 56. Swedish University of Agricultural Sciences, Uppsala.Google Scholar
  301. Sjaunja, L.O. and Andersson, I. (1985) Laboratory experiments with a new IR milk analyzer, the Milko Scan. Acta Agric. Scand., 35, 345–52.CrossRefGoogle Scholar
  302. Sjaunja, L.O. and Schaar, J. (1984) Determination of casein in milk by infra red spectrophotometry. Milchwissenschaft, 39, 288–90.Google Scholar
  303. Smith, B.P., Oliver, D.G., Singh, P., Dilling, G., Marvin, P.A., Ram, B.P., Jang, L.S., Sharkov, N., Osborn, J.S. and Jackett, K. (1989) Detection of Salmonella dublin mammary gland infection in carrier cows, using an enzyme linked immunosorbent assay for antibody in milk or serum. Am. J. Vet. Res., 50, 1352–60.Google Scholar
  304. Smith, E.B., Barbano, D.M., Lynch, J.M. and Fleming, J.R. (1993a) A quantitative linearity evaluation method for infrared milk analyzers. J. Assoc. Off. Anal. Chem. Int., 76, 1300–8.Google Scholar
  305. Smith, E.B., Barbano, D.M., Lynch, J.M. and Fleming, J.R. (1993b) Performance of homogenizers in infrared milk analyzers: a survey. J. Assoc. Off. Anal. Chem. Int., 76, 1033–41.Google Scholar
  306. Smith, E.B., Barbano, D.M., Lynch, J.M. and Fleming, J.R. (1995) Infrared analysis of milk: effect of homogenizer and optical filter selection on apparent homogenization efficiency and repeatability. J. Assoc. Off Anal. Chem. Int., 78, 1225–33.Google Scholar
  307. Smith, J.L., Hendrickson, W.A., Honzatko, R.B. and Sheriff, S. (1986) Structural heterogeneity in protein crystals. Biochemistry, 25, 5018–27.CrossRefGoogle Scholar
  308. Smith, R.D., Loo, J.A., Edmonds, C.G., Barinaga, C.J. and Udseth, H.R. (1990) New developments in biochemical mass spectrometry: electrospray ionization. Anal. Biochem., 62, 882–99.Google Scholar
  309. Spengler, B and Cotter, R. (1990) Ultraviolet laser desorption/ionization mass spectrometry of proteins above 100,000 daltons by pulsed ion extraction time of flight analysis. Anal. Chem., 62, 793–6.CrossRefGoogle Scholar
  310. Spengler, B. (1997) Post source decay analysis in matrix assisted laser desorption/ ionization mass spectrometry of biomolecules. J. Mass Spectrom., 32, 1019–36.CrossRefGoogle Scholar
  311. Spies, J.R. and Chambers, D.C. (1948) Chemical determination of tryptophan. Anal. Chem., 20, 30–9.CrossRefGoogle Scholar
  312. Steinsholt, A.K. (1976) Report 193 Dairy Research Institute, Agricultural University of Norway Aas.Google Scholar
  313. Stelwagen, K. and Lacy Hulbert, S.J. (1996) Effect of milking frequency on milk somatic cell count characteristics and mammary secretory cell damage in cows. Am. J. Vet. Res., 57, 902–5.Google Scholar
  314. Strange, E.D., van Hekken, D. and Thompson, M.P. (1991) Qualitative and quantitative determination of caseins with reverse phase and anion exchange HPLC. J. Food Sci., 56, 1415–20.CrossRefGoogle Scholar
  315. Strange, E.D., Malin, E.L., van Hekken, D.J.L. and Basch, J.J. (1992) Chromatographic and electrophoretic methods used for analysis of milk proteins. J. Chromatogr., 624, 81–102.CrossRefGoogle Scholar
  316. Subirade, M., Loupil, F., Allain, A.F. and Paquin, P. (1998) Effect of dynamic high pressure on the secondary structure of β-lactoglobulin and on its conformational properties as determined by Fourier Transform Infrared Spectroscopy. Int. Dairy J., 8, 135–40.CrossRefGoogle Scholar
  317. Swaisgood, H.E. (1992) Chemistry of the caseins, in Advanced Dairy Chemistry-1, Proteins, 2nd edn, (P.F. Fox ed.) Elsevier Science Publishers, London, pp. 63–110.Google Scholar
  318. Sweeney, R.A. (1989) Generic combustion method for determination of crude protein in feeds: Collaborative study. J. Assoc. Off’. Anal. Chem., 72, 770–4.Google Scholar
  319. Sweeney, R.A. and Rexroad P.R. (1987) Comparison of LECO FP 228 “Nitrogen determinatior” with AOAC copper catalyst Kjeldahl method for crude protein. J. Assoc. Off. Anal. Chem., 70(6), 1028–30.Google Scholar
  320. Szijarto, R.J., Biggs, D.A. and Irvine, D.M. (1973) Variability of casein, serum protein and nonprotein nitrogen in plant milk supplies in Ontario. J. Dairy Sci., 56,45–51.CrossRefGoogle Scholar
  321. Tam, J.P. (1994) Immunization with peptide carrier complexes: traditional and multiple antigen peptide systems, in Peptide Antigens. A Practical Approach, (G.B. Wisdom ed.) Oxford University Press, pp. 83–114.Google Scholar
  322. Tarassuk, N.P., Abe, N. and Moats, W.A. (1967) The dye binding of milk proteins. Tech. Bull., 1369, US Dept. of Agriculture, Washington, DC.Google Scholar
  323. Tijssen, P. (1988) Practice and theory of enzyme immunoassays, in Laboratory Techniques in Biochemistry and Molecular Biology, (R.H. Burdon and P.H. Van Knippenberg eds.) Elsevier, Amsterdam, pp. 1–7.Google Scholar
  324. Trieu Cuot, P. and Gripon, J.C. (1981) Electrofocusing and two dimensional electrophoresis of bovine caseins. J. Dairy Res., 48, 303–10.CrossRefGoogle Scholar
  325. Trieu Cuot, P. (1981) Etude des Caséines et de Leurs Produits de Dégradation par Méthodes Électrophorétiques. Application à l’Étude de l’Affinage du Camembert. Thesis, University of Paris VII.Google Scholar
  326. Tunon, P. and Johansson, K.E. (1984) Yet another improved silver staining method for the detection of proteins in polyacrylamide gels. J. Biochem. Biophys. Methods, 9, 171–79.CrossRefGoogle Scholar
  327. Udy, D.C. (1956) A rapid method for estimating total protein in milk. Nature, 178, 314–5.Google Scholar
  328. Valence, F., Richoux, R., Thierry, A., Palva, A. and Lortal, S. (1999) Autolysis of Lactobacillus helveticus and Propionibacterium freudenreichii in Swiss cheeses: first evidence by using species specific lysis markers. J. Dairy Res., 65, 609–20.CrossRefGoogle Scholar
  329. van de Voort, F.R., Elkashef, A.A. and Mills, B.L. (1990) Dry calibration milks for infrared milk analyzers. J. Assoc. Off. Anal. Chem., 73, 688–92.Google Scholar
  330. van de Voort, F.R., Elkashef, A.A. and Blais, J. S. (1991) Interlaboratory assessment of dry calibration milk powders for calibrating infrared milk analyzers. J. Assoc. Off. Anal. Chem., 74, 772–9.Google Scholar
  331. van de Voort, F.R., Sedman, J., Emo, G. and Ismael, A.A. (1992) Assessment of Fourier transform infrared analysis of milk. J. Assoc. Off. Anal. Chem. Int., 75, 780–5.Google Scholar
  332. van Boekel, M.A.J.S. and Ribadeau Dumas, B. (1987) Addendum to the evaluation of the Kjeldahl factor for conversion of the nitrogen content of milk and milk products to protein content. Neth. Milk Dairy J., 41, 281–84.Google Scholar
  333. van Hekken, D.L. and Thompson, M.P. (1992) Application of PhastSystem® to the resolution of bovine milk proteins on urea polyacrylamide gel electrophoresis. J. Dairy Sci., 75, 1204–10.CrossRefGoogle Scholar
  334. van Reusel, A. and Klijn, C.J. (1987) Automated methods for routine analysis of raw milk. The dye binding method for determination of the protein content of milk, Bulletin 208, International Dairy Federation, Brussels, pp. 17–20.Google Scholar
  335. Vegarud, G.E., Molland, T.S., Brovold, M.J., Devoid, T.G., Alestrom, P., Steine, T., Rogne, S. and Langsrud, T. (1989) Rapid separation of genetic variants of caseins and whey proteins using urea modified gels and fast electrophoresis. Milchwissenschaft, 44, 689–91.Google Scholar
  336. Verdi, R.J., Barbano, D.M., Delela Valle, M.E. and Senyk, G.F. (1987) Variability in true protein, casein, non-protein nitrogen and proteolysis in high and low somatic cell milks. J. Dairy Sci., 70, 230–42.CrossRefGoogle Scholar
  337. Visser, S., Slangen, C.J. and Rollema, H.S. (1991) Phenotyping of bovine milk proteins by reversed phase high performance liquid chromatography. J. Chromatogr., 548, 361–70.CrossRefGoogle Scholar
  338. Visser, S., Slangen, C.J., Lagerwerf, F.M., van Dongen, W.D. and Haverkamp, J. (1995) Identification of a new genetic variant of bovine β-casein using reversed phase high performance liquid chromatography and mass spectrometric analysis. J. Chromatogr., A, 711, 141–50.CrossRefGoogle Scholar
  339. Visser, S., Slangen, K.J. and Rollema, H.S. (1986) High performance liquid chromatography of bovine caseins with the application of various stationary phases. Milchwissenschaft, 41, 559–62.Google Scholar
  340. Waite, R. and Smith, G.M. (1972) Measurement of the protein content of milk from mastitic quarters by the Amido Black method. J. Dairy Res., 39, 195–201.CrossRefGoogle Scholar
  341. Wake, R.G. and Baldwin, R.C. (1961) Analysis of casein fractions by zone electrophoresis in concentrated urea. Biochim. Biophys. Acta, 47, 225–39.CrossRefGoogle Scholar
  342. Ward, L.S. and Bastian, E.D. (1998) Isolation and identification of β-casein A1 4P and β-casein A2 4P in commercial caseinates. J. Agric. Food Chem., 46, 77–83.CrossRefGoogle Scholar
  343. Warme, P.K., Momany, F.A., Rumball, S.V., Tuttle, R.W. and Scheraga, H.A. (1974) Computation of structures of homologous proteins α-lactalbumin from lysozyme. Biochemistry, 13, 768–82.CrossRefGoogle Scholar
  344. Watson, D.C, Brendon, M.R. and Lascelles, A.K. (1972) Concentration of immunoglobulins in mammary secretions with particular reference to selective transport of IgG. Aust. J. Exp. Biol. Med., 50, 535–41.CrossRefGoogle Scholar
  345. Wehling, M.M. and Pierce, R.L. (1994) Comparison of sample handling and data treatment methods for determining moisture and fat in Cheddar cheese by near infrared spectroscopy. J. Agric. Food. Chem., 42, 2830–5.CrossRefGoogle Scholar
  346. Welty, F.K., Smith, K.L. and Schanbacher, F.L. (1976) Lactoferrin concentration during involution of the bovine mammary gland. J. Dairy Sci., 59, 224–31.CrossRefGoogle Scholar
  347. Wiles, P.G., Gray, I.K. and Kissling, R.C. (1998), Routine analysis of proteins by Kjeldahl and Dumas methods: review and interlaboratory study using dairy products. J. Assoc. Off. Anal. Chem. Int., 81, 620–32.Google Scholar
  348. Wishart, D.S., Sykes, B.D. and Richards, F.M. (1992) The chemical shift index: A fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry, 31, 1647–51.CrossRefGoogle Scholar
  349. Woollard, D.C. (1985) N1R technology within the New Zealand dairy industry its dramatic impact. NIR 84. Proc. Int. Symposium on Near Infrared Reflectance Spectroscopy, 1st Cereal Chem. Div., Melbourne, Australia.Google Scholar
  350. Wüthrich, K. (1989) Protein structure determination in solution by nuclear magnetic resonance spectroscopy. Science, 243, 45–50.CrossRefGoogle Scholar
  351. Yates J.R., III (1998) Mass spectrometry and the age of the proteome. J. Mass Spectrom., 33, 1–19.CrossRefGoogle Scholar
  352. Yates J.R., III, McCormack, A.L., Schieltz, D., Carmack, E. and Link, A. (1997) Direct analysis of protein mixtures by tandem mass spectrometry. J. Protein Chem., 16, 495–97.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • L. Tremblay
  • M. F. Laporte
  • J. Léonil
  • D. Dupont
  • P. Paquin

There are no affiliations available

Personalised recommendations