Advertisement

Lipases in Milk

  • T. Olivecrona
  • S. Vilaró
  • G. Olivecrona

Abstract

Two indigenous lipases have been found in milk, one of which is also present in pancreatic juice. The latter enzyme is called ‘cholesteryl ester hydrolase’ or ‘non-specific lipase’, reflecting its broad substrate specificity, but in milk, the enzyme is called ‘bile salt stimulated (or activated) lipase’ BSSL or BAL, because it displays no activity unless bile salts are present. Hence, it is a pro-enzyme that becomes active when the milk reaches the intestine. In human milk, BSSL makes up about 1% of the protein and appears to substantially improve the utilization of milk lipids, particularly in premature infants. Efforts are under way to produce this enzyme biotechnologically and market it as a supplement to infant formulae. This enzyme is present in milk from many mammals, but not in the domesticated milk-producing animals. Since milk from these species is the focus for the present volume, we will not review the interesting biochemical and physiological properties of BSSL here. The reader is referred to recent papers on its structure (Chen et al., 1998) and on its importance for growth and development of human infants (Hernell et al., 1997).

Keywords

Mammary Gland Lipoprotein Lipase Pancreatic Lipase Bovine Milk Hepatic Lipase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson, M. (1982) Factors affecting the distribution of lipoprotein lipase activity between serum and casein micelles in bovine milk. J. Dairy Sci., 49, 51–9.Google Scholar
  2. Andersson, Y., Thelander, L. and Bengtsson-Olivecrona, G. (1991a) Demonstration of apolipoprotein CII in guinea pigs. Functional characteristics, cDNA sequence and tissue expression. J. Biol. Chem., 266, 4074–80.Google Scholar
  3. Andersson, Y., Thelander, L. and Bengtsson-Olivecrona, G. (1991b) Rat apolipoprotein C-II lacks the conserved site for proteolytic cleavage of the pro-form. J. Lipid Res., 32, 1805–9.Google Scholar
  4. Andersson, Y., Nilsson, S., Lindberg, A., Thelander, L. and Olivecrona, G. (1996) Apolipoprotein CII from chicken (Gallus domesticus) — The amino-terminal domain is different from corresponding domains in mammals. J. Biol. Chem., 271, 33060–6.Google Scholar
  5. Babaev, V.R., Fazio, S., Gleaves, L.A., Carter, K.J., Semenkovich, C.F. and Linton, M.F. (1999) Macrophage lipoprotein lipase promotes foam cell formation and atherosclerosis in vivo. J. Clin. Invest., 103, 1697–705.Google Scholar
  6. Baker, M.E. (1988) Is vitellogenin an ancestor of apolipoprotein B-100 of human low-density lipoprotein and human lipoprotein lipase? Biochem. J., 255, 1057–60.Google Scholar
  7. Barber, M.C., Clegg, R.A., Travers, M.T. and Vernon, R.G. (1997) Lipid metabolism in the lactating mammary gland. Biochim. Biophys. Acta, 1347, 101–26.Google Scholar
  8. Beisiegel, U. (1996) New aspects on the role of plasma lipases in lipoprotein catabolism and atherosclerosis. Atherosclerosis, 124, 1–8.Google Scholar
  9. Beisiegel, U., Weber, W. and Bengtsson-Olivecrona, G. (1991) Lipoprotein lipase enhances the binding of chylomicrons to low density lipoprotein receptor-related protein. Proc. Natl. Acad. Sci. USA, 88, 8342–6.Google Scholar
  10. Bengtsson, G. and Olivecrona, T. (1980) Lipoprotein lipase. Mechanism of product inhibition. Eur. J. Biochem., 106, 557–62.Google Scholar
  11. Bengtsson, G. and Olivecrona, T. (1983) The effects of pH and salt on the lipid binding and enzyme activity of lipoprotein lipase. Biochim. Biophys. Acta, 751, 254–9.Google Scholar
  12. Bengtsson-Olivecrona, G. and Sletten, K. (1990) Primary structure of the bovine analogues to human apolipoproteins CII and CIII. Studies on isoforms and evidence for proteolytic processing. Eur. J. Biochem., 192, 515–21.Google Scholar
  13. Bengtsson-Olivecrona, G., Olivecrona, T. and Jörnvall, H. (1986) Lipoprotein lipases from cow, guinea-pig and man. Structural characterization and identification of protease-sensitive internal regions. Eur. J. Biochem., 161, 281–8.Google Scholar
  14. Bergö, M., Olivecrona, G. and Olivecrona, T. (1996) Diurnal rhythms and effects of fasting and refeeding on rat adipose tissue lipoprotein lipase. Amer J. Physiol., 271, E1092–7.Google Scholar
  15. Bosner, M.S., Gulick, T., Riley, D.J.S., Spilburg, C.A. and Lange, L.G. (1989) Heparin-modulated binding of pancreatic lipase and uptake of hydrolyzed triglycérides in the intestine. J. Biol. Chem., 264, 20261–4.Google Scholar
  16. Brunzell, J.D. (1995) Familial lipoprotein lipase deficiency and other causes of the chylomicronemia syndrome, in Metabolic Basis of Inherited Disease, (C.R. Scriver, A.L. Beaudet, W.S. Sly and D. Valle eds.) McGraw-Hill Book Co., New York, pp. 1913–32.Google Scholar
  17. Camps, L., Reina, M., Llobera, M., Vilaró, S. and Olivecrona, T. (1990) Lipoprotein lipase: cellular origin and functional distribution. Am. J. Physiol., 258, C673–81.Google Scholar
  18. Carrière, F., Verger, R., Lookene, A. and Olivecrona, G. (1995) Lipase structures at the interface between chemistry and biochemistry, in Interface between Chemistry and Biochemistry, (P. Joliès and H. Jörnvall eds.) Birkhauser Verlag, Basel, Switzerland, pp. 3–26.Google Scholar
  19. Cartier, P. and Chilliard, Y. (1986) Effects of different skim milk fractions on activity of cow milk purified lipoprotein lipase. J. Dairy Sci., 69, 951–5.Google Scholar
  20. Castberg, H.B., Egelrud, T., Solberg, P. and Olivecrona, T. (1975) Lipases in bovine milk and the relationship between the lipoprotein lipase and tributyrate hydrolysing activities in cream and skim-milk. J. Dairy Res., 42, 255–66.Google Scholar
  21. Chan, L. and Li, W.-H. (1992) Apolipoprotein gene expression, structure, and evolution, in Structure and Function of Apolipoproteins, (M. Rosseneu ed.) CRC Press, Boca Raton, FL, pp. 33–61.Google Scholar
  22. Chapus, C., Rovery, M., Sarda, L. and Verger, R. (1988) Minireview on pancreatic lipase and colipase. Biochimie, 70, 1223–34.Google Scholar
  23. Chen, J.C, Miercke, L.J.W., Krucinski, J., Starr, J.R., Saenz, G., Wang, X., Spilburg, C.A., Lange, L.G., Ellsworth, J.L. and Stroud, R.M. (1998) Structure of bovine pancreatic cholesterol esterase at 1.6 A: novel structure features involved in lipase activation. Biochemistry, 37, 5107–17.Google Scholar
  24. Chilliard, Y. (1980) Variations physiologiques des activités lipasiques et de la lipolyse spontanée dans les laits de vache, de chèvre et de femme: revue bibliographique. Lait, 60, 1–60.Google Scholar
  25. Chilliard, Y. and Doreau, M. (1985) Characterization of lipase in mare milk. J. Dairy Sci., 68, 37–9.Google Scholar
  26. Chilliard, Y., Sauvant, D. and Morand-Fehr, P. (1979) Goat mammary, adipose and milk lipoprotein lipases. Ann. Rech. Vet., 10, 401–3.Google Scholar
  27. Chilliard, Y., Selselet-Attou, G., Bas, P. and Morand-Fehr, P. (1984) Characteristics of lipolytic system in goat milk. J. Dairy Sci., 67, 2216–23.Google Scholar
  28. Clay, M.A., Hopkins, G.J., Ehnholm, C. and Barter, P.J. (1989) The rabbit as an animal model of hepatic lipase deficiency. Biochim. Biophys. Acta, 1002, 173–81.Google Scholar
  29. Cryer, A., Riley, S.E., Williams, E.R. and Robinson, D.S. (1976) Effect of nutritional status on rat adipose tissue, muscle and post-heparin plasma clearing factor lipase activities: their relationship to triglycéride fatty acid uptake by fatcells and to plasma insulin concentrations. Clin. Sci. Mol. Med., 50, 213–21.Google Scholar
  30. Datta, S., Li, W.H., Ghosh, I., Luo, C.C. and Chan, L. (1987) Structure and expression of dog apolipoprotein C-II and C-III mRNAs. Implications for the evolution and functional constraints of apolipoprotein structure. J. Biol. Chem., 262, 10588–93.Google Scholar
  31. Deckelbaum, R.J., Hamilton, J.A., Moser, A., Bengtsson-Olivecrona, G., Butbul, E., Carpentier, Y.A., Gutman, A. and Olivecrona, T. (1990) Medium-chain vs long-chain triacylglycerol emulsion hydrolysis by lipoprotein lipase and hepatic lipase: Implications for the mechanism of lipase action. Biochemistry, 29, 1136–42.Google Scholar
  32. Deeth, H.C. and Fitz-Gerald, C.H. (1976) Lipolysis in dairy products: A review. Aust. J. Dairy Technol., 31, 53–64.Google Scholar
  33. Del Prado, M., Villalpando, S., Gordillo, J. and Hernndez-Montes, H. (1999) A high dietary lipid intake during pregnancy and lactation enhances mammary gland lipid uptake and lipoprotein lipase activity in rats. J. Nutr., 129, 1574–8.Google Scholar
  34. Derewenda, Z.S. and Cambillau, C. (1991) Effects of gene mutations in lipoprotein and hepatic lipases as interpreted by a molecular model of the pancreatic triglyceride lipase. J. Biol. Chem., 266, 23112–9.Google Scholar
  35. Downey, W.K. and Murphy, R.F. (1975) Partitioning of the lipolytic enzymes in bovine milk. Document 86, International Dairy Federation Brussels, pp. 19–23.Google Scholar
  36. Downey, W.K. (1980) Risks from pre-and post-manufacture lipolysis. Document 118, International Dairy Federation Brussels, pp. 4–18.Google Scholar
  37. Driessen, F.M. (1976) A comparative study of the lipase in bovine colostrum and in bovine milk. Neth. Milk Dairy J., 30, 186–96.Google Scholar
  38. Dugi, K.A., Dichek, H.L., Talley, G.D., Brewer, H.B., Jr. and Santamarina-Fojo, S. (1992) Human lipoprotein lipase: The loop covering the catalytic site is essential for interaction with lipid substrates. J. Biol. Chem., 267, 25086–91.Google Scholar
  39. Ekström, B., Nilsson, Å. and Åkesson, B. (1989) Lipolysis of polyenoic fatty acid esters of human chylomicrons by lipoprotein lipase. Eur. J. Clin. Invest., 19,259–64.Google Scholar
  40. Etienne, J., Noé, L., Rossignol, M., Dosne, A-M. and Debray, J. (1981) Post-heparin lipolytic activity with no hepatic triacylglycerol lipase involved in a mammalian species. Biochim. Biophys. Acta, 663, 516–23.Google Scholar
  41. Faustinella, F., Smith, L.C., Semenkovich, C.F. and Chan, L. (1991) Structural and functional roles of highly conserved serines in human lipoprotein lipase. Evidence that serine 132 is essential for enzyme catalysis. J. Biol. Chem., 266, 9481–5.Google Scholar
  42. Fleming, M.G. (1980) Mechanical factors associated with milk lipolysis in bovine milk. Document 118, International Dairy Federation Brussels, pp. 41–52.Google Scholar
  43. Fojo, S.S., Law, S.W. and Brewer, H.B., Jr. (1987) The human preproapolipoprotein C-II gene. Complete nucleic acid sequence and genomic organization. FEBS Lett., 213, 221–6.Google Scholar
  44. Fox, P.F., Yaguchi, M. and Tarassuk, N.P. (1967) Distribution of lipase in milk proteins. II. Dissociation from K-casein with dimethylformamide. J. Dairy Sci., 50, 307–12.Google Scholar
  45. Freed, L.M., Berkow, S.E., Hamosh, P., York, C.M., Mehta, N.R. and Hamosh, M. (1989) Lipases in human milk: Effect of gestational age and length of lactation on enzyme activity. J. Am. Coll. Nutr., 8, 143–50.Google Scholar
  46. Friedman, G., Chajek-Shaul, T., Stein, O., Olivecrona, T. and Stein, Y. (1981) The role of lipoprotein lipase in the assimilation of cholesteryl linoleyl ether by cultured cells incubated with labeled chylomicrons. Biochim. Biophys. Acta, 666, 156–64.Google Scholar
  47. Gliemann, J. (1998) Receptors of the low density lipoprotein (LDL) receptor family in man. Multiple functions of the large family members via interaction with complex ligands. Biol. Chem. Hoppe-Seyler, 379, 951–64.Google Scholar
  48. Goldberg, I.J. (1996) Lipoprotein lipase and lipolysis: Central roles in lipoprotein metabolism and atherogenesis. J. Lipid Res., 37, 693–707.Google Scholar
  49. Hamosh, M. and Scow, R.O. (1970) Lipoprotein lipase activity in guinea pig and rat milk. Biochim. Biophys. Acta, 231, 283–9.Google Scholar
  50. Hamosh, M., Clary, T.R., Chernick, S.S. and Scow, R.O. (1970) Lipoprotein lipase activity of adipose and mammary tissue and plasma triglyceride in pregnant and lactating rats. Biochim. Biophys. Acta, 210, 473–82.Google Scholar
  51. Hernell, O. and Bläckberg, L. (1985) Lipolysis in human milk: causes and consequences, in Composition and Physiological Properties of Human Milk, (J. Schaub ed.) Elsevier, Amsterdam, pp. 165–75.Google Scholar
  52. Hernell, O., Ward, H., Bläckberg, L. and Pereira, M.E.A. (1986) Killing of Giardia lamblia by human milk lipases: an effect mediated by lipolysis of milk lipids. J. Inf. Dis., 153, 715–20.Google Scholar
  53. Hernell, O. and Bläckberg, L. (1991) Digestion and absorption of human milk lipids, in Encyclopedia of Human Biology, Vol. 3, (R. Dulbecco ed.) Academic Press, New York, pp. 47–56.Google Scholar
  54. Hill, J.S., Yang, D., Nikazy, J., Curtiss, L.K., Sparrow, J.T. and Wong, H. (1998) Subdomain chimeras of hepatic lipase and lipoprotein lipase — Localization of heparin and cofactor binding. J. Biol. Chem., 273, 30979–84.Google Scholar
  55. Hirata, K., Dichek, H.L., Cioffi, J.A., Choi, S.Y., Leeper, N.J., Quintana, L., Kronmal, G.S., Cooper, A.D. and Quertermous, T. (1999) Cloning of a unique lipase from endothelial cells extends the lipase gene family. J. Biol. Chem., 274, 14170–5.Google Scholar
  56. Hocquette, J.F., Graulet, B. and Olivecrona, T. (1998) Lipoprotein lipase activity and mRNA levels in bovine tissues. Comp. Biochem. Physiol., B 121, 201–12.Google Scholar
  57. Hoffer, M.J.V., Van Eck, M.M., Havekes, L.M., Hofker, M.H. and Frants, R.R. (1993) Structure and expression of the mouse apolipoprotein C2 gene. Genomics, 17, 45–51.Google Scholar
  58. Hohe, K.A., Dimick, P.S. and Kilara, A. (1985) Milk lipoprotein lipase distribution in the major fractions of bovine milk. J. Dairy Sci., 68, 1067–73.Google Scholar
  59. Jellema, A. (1980) Physiological factors associated with lipolytic activity in cow’s milk. Document 118, International Dairy Federation Brussels, pp. 33–40.Google Scholar
  60. Jensen, D.R., Bessesen, D.H., Etienne, J., Eckel, R.H. and Neville, M.C. (1991) Distribution and source of lipoprotein lipase in mouse mammary gland. J. Lipid Res., 32, 733–42.Google Scholar
  61. Jensen, R.G. and Pitas, R.E. (1976) Milk lipoprotein lipase: a review. J. Dairy Sci., 59, 1203–14.Google Scholar
  62. Kirchgessner, T.G., Chaut, J.C., Heinzmann, C, Etienne, J., Guilhot, S., Svenson, K., Ameis, D., Pilon, C, D’Auriol, L., Andalibi, A., Schotz, M.C., Galibert, F. and Lusis, A.J. (1989) Organization of the human lipoprotein lipase gene and evolution of the lipase gene family. Proc. Natl. Acad. Sci. USA, 86, 9647–51.Google Scholar
  63. Komaromy, M.C. and Reed, M. (1991) Expression of rat hepatic lipase in heterologous systems: Evidence for different sites for interface binding and catalysis. J. Lipid Res., 32, 963–75.Google Scholar
  64. Lindberg, A. and Olivecrona, G. (1995) Lipase evolution: Trout, Xenopus and chicken have lipoprotein lipase and apolipoprotein C-II-like activity but lack hepatic lipase-like activity. Biochim. Biophys. Acta, 1255, 205–11.Google Scholar
  65. Lookene, A. and Bengtsson-Olivecrona, G. (1993) Chymotryptic cleavage of lipoprotein lipase — Identification of cleavage sites and functional studies of the truncated molecule. Eur. J. Biochem., 213, 185–94.Google Scholar
  66. Lookene, A., Skottova, N. and Olivecrona, G. (1994) Interactions of lipoprotein lipase with the active-site inhibitor tetrahydrolipstatin (OrlistatR). Eur. J. Biochem., 222, 395–403.Google Scholar
  67. Lookene, A., Chevreuil, O., Østergaard, P. and Olivecrona, G. (1996) Interaction of lipoprotein lipase with heparin fragments and with heparan sulfate: stoichiometry, stabilization and kinetics. Biochem., 35, 12155–63.Google Scholar
  68. Masuno, H., Blanchette-Mackie, E.J., Chernick, S.S. and Scow, R.O. (1990) Synthesis of inactive nonsecretable high mannose-type lipoprotein lipase by cultured brown adipocytes of combined lipase-deficient cld/cld mice. J. Biol. Chem., 265, 1628–38.Google Scholar
  69. Masuno, H., Schultz, C.J., Park, J.W., Blanchette-Mackie, E.J., Mateo, C. and Scow, R.O. (1991) Glycosylation, activity and secretion of lipoprotein lipase in cultured brown adipocytes of newborn mice. Effect of tunicamycin, monensin, 1-deoxymannojirimycin and swainsonine. Biochem. J., 277, 801–9.Google Scholar
  70. McBride, O.W. and Korn, E.D. (1963) The lipoprotein lipase of mammary gland and the correlation of its activity to lactation. J. Lipid Res., 4, 17–23.Google Scholar
  71. Muller, D.L., Saudek, C.D. and Applebaum-Bowden, D. (1985) Hepatic triglyceride lipase in diabetic dogs. Metabolism, 34, 251–4.Google Scholar
  72. Neville, M.C, Waxman, L.J., Jensen, D.R. and Eckel, R.H. (1991) Lipoprotein lipase in human milk: compartmentalization and effect of fasting, insulin, and glucose. J. Lipid Res., 32, 251–7.Google Scholar
  73. Nielsen, M.S., Brejning, J., Garcia, R., Zhang, H.F., Hayden, M.R., Vilaró, S. and Gliemann, J. (1997) Segments in the C-terminal folding domain of lipoprotein lipase important for binding to the low density lipoprotein receptor-related protein and to heparan sulfate proteoglycans. J. Biol. Chem., 272, 5821–7.Google Scholar
  74. Nykjaer, A., Nielsen, M., Lookene, A., Meyer, N., Roigaard, H., Etzerodt, M., Beisiegel, U., Olivecrona, G. and Gliemann, J. (1994) A carboxyl-terminal fragment of lipoprotein lipase binds to the low density lipoprotein receptorrelated protein and inhibits lipase-mediated uptake of lipoprotein in cells. J. Biol. Chem., 269, 31747–55.Google Scholar
  75. Oka, K., Nakano, T., Tkalcevic, G.T., Scow, R.O. and Brown, W.V. (1991) Molecular cloning of mouse hepatic triacylglycerol lipase: Gene expression in combined lipase-deficient (cld/cld) mice. Biochim. Biophys. Acta, 1089, 13–20.Google Scholar
  76. Olivecrona, G. and Olivecrona, T. (1995) Triglyceride lipases and atherosclerosis. Cur. Opin. Lipidol, 6, 291–305.Google Scholar
  77. Olivecrona, G. and Beisiegel, U. (1997) Lipid binding of apolipoprotein CH is required for stimulation of lipoprotein lipase activity against apolipoprotein CII-deficient chylomicrons. Arterioscler. Thromb. Vasc. Biol., 17, 1545–9.Google Scholar
  78. Olivecrona, T. and Bengtsson, G. (1984) Lipases in milk, in Lipases, (B. Borgström and H. Brockman eds.) Elsevier, Amsterdam, pp. 205–61.Google Scholar
  79. Olivecrona, T. and Olivecrona, G. (1999) Lipoprotein and hepatic lipases in lipoprotein metabolism, in Lipoproteins in Health and Disease, (D.J. Betteridge, D.R. Illingworth and J. Shepherd eds.) Arnold, London, pp. 223–46.Google Scholar
  80. Olivecrona, T., Vilaró, S. and Bengtsson-Olivecrona, G. (1992) Indigenous enzymes in milk. II. Lipase, in Advanced Dairy Chemistry-I: Proteins, 2nd edn, (P.F. Fox ed.) Elsevier, London, pp. 292–310.Google Scholar
  81. Osborne, J.C., Bengtsson-Olivecrona, G., Lee, N.S. and Olivecrona, T. (1985) Studies on inactivation of lipoprotein lipase: role of the dimer to monomer dissociation. Biochem., 24, 5606–11.Google Scholar
  82. Peterson, J., Bihain, B.E., Bengtsson-Olivecrona, G., Deckelbaum, R.J., Carpentier, Y.A. and Olivecrona, T. (1990) Fatty acid control of lipoprotein lipase: A link between energy metabolism and lipid transport. Proc. Natl. Acad. Sci. USA, 87, 909–13.Google Scholar
  83. Pillay, V.T., Myhr, A.N. and Gray, J.I. (1980) Lipolysis in milk. I. Determination of free fatty acid and threshold value for lipolyzed flavor detection. J. Dairy Sci., 63, 1213–8.Google Scholar
  84. Robinson, D.S. (1963) Changes in the lipolytic activity of the guinea pig mammary gland at parturition. J. Lipid Res., 4, 21–3.Google Scholar
  85. Rojas, C, Olivecrona, T. and Bengtsson-Olivecrona, G. (1991) Comparison of the action of lipoprotein lipase on triacylglycerols and phospholipids when presented in mixed liposomes or in emulson particles. Eur. J. Biochem., 197, 315–21.Google Scholar
  86. Santamarina-Fojo, S. (1998a) The familial chylomicronemia syndrome. Endocrin. Metabol. Clin. N. Amer., 27, 551–67.Google Scholar
  87. Santamarina-Fojo, S., Haudenschild, C. and Amar, M. (1998b) The role of hepatic lipase in lipoprotein metabolism and atherosclerosis. Curr. Opin. Lipidol., 9, 211–9.Google Scholar
  88. Saxena, U. and Goldberg, I.J. (1990) Interaction of lipoprotein lipase with glycosaminoglycans and apolipoprotein C-II: Effects of free-fatty-acids. Biochim. Biophys. Acta, 1043, 161–8.Google Scholar
  89. Saxena, U., Witte, L.D. and Goldberg, I.J. (1989) Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids. J. Biol. Chem., 264, 4349–55.Google Scholar
  90. Scow, R.O. and Chernick, S.S. (1987) Role of lipoprotein lipase during lactation, in Lipoprotein Lipase, (J. Borensztajn ed.) Evener Publishers, Chicago, pp. 149–85.Google Scholar
  91. Semb, H. and Olivecrona, T. (1986) Lipoprotein lipase in guinea pig tissues: molecular size and rates of synthesis. Biochim. Biophys. Acta, 878, 330–7.Google Scholar
  92. Semb, H. and Olivecrona, T. (1989) The relation between glycosylation and activity of guinea pig lipoprotein lipase. J. Biol. Chem., 264, 4195–200.Google Scholar
  93. Semenkovich, C.F., Luo, C.C., Nakanishi, M.K., Chen, S.H., Smith, L.C. and Chan, L. (1990) In vitro expression and site-specific mutagenesis of the cloned human lipoprotein lipase gene. Potential N-linked glycosylation site asparagine 43 is important for both enzyme activity and secretion. J. Biol. Chem., 265, 5429–33.Google Scholar
  94. Sendak, R.A. and Bensadoun, A. (1998) Identification of a heparin-binding domain in the distal carboxyl-terminal region of lipoprotein lipase by site-directed mutagenesis. J. Lipid Res., 39, 1310–15.Google Scholar
  95. Smith, L.C. and Pownall, H.J. (1984) Lipoprotein lipase, in, Lipases, (B. Borgström and H. Brockman eds.) Elsevier, Amsterdam, pp. 263–305.Google Scholar
  96. Stein, O., Halperin, G., Leitersdorf, E., Olivecrona, T. and Stein, Y. (1984) Lipoprotein lipase mediated uptake of non-degradable ether analogues of phosphatidylcholine and cholesteryl ester by cultured cells. Biochim. Biophys. Acta, 795, 47–59.Google Scholar
  97. Sundheim, G. (1988) Spontaneous lipolysis in bovine milk: Combined effects of cream, skim milk and lipoprotein lipase activity. J. Dairy Sci., 71, 620–6.Google Scholar
  98. Sundheim, G. and Bengtsson-Olivecrona, G. (1985) Lipolysis in milk induced by cooling or by heparin: comparisons of amount of lipoprotein lipase in the cream fraction and degree of lipolysis. J. Dairy Sci., 68, 589–93.Google Scholar
  99. Sundheim, G. and Bengtsson-Olivecrona, G. (1986) Iodine-125-labeled lipoprotein lipase as a tool to detect and study spontaneous lipolysis in bovine milk. J. Dairy Sci., 69, 1776–80.Google Scholar
  100. Sundheim, G. and Bengtsson-Olivecrona, G. (1987a) Hydrolysis of bovine milk fat globules by lipoprotein lipase: inhibition by proteins extracted from milk fat globule membrane. J. Dairy Sci., 70, 1815–21.Google Scholar
  101. Sundheim, G. and Bengtsson-Olivecrona, G. (1987b) Methods to assess the propensity of milk fat globules toward lipolysis and the ability of skim milk to inhibit lipolysis. J. Dairy Sci., 70, 2040–5.Google Scholar
  102. Sundheim, G. and Bengtsson-Olivecrona, G. (1987c) Hydrolysis of bovine and caprine milk fat globules by lipoprotein lipase. Effects of heparin and of skim milk on lipase distribution and on lipolysis. J. Dairy Sci., 70, 2467–75.Google Scholar
  103. Sundheim, G. and Bengtsson-Olivecrona, G. (1987d) Isolated milk fat globules as substrate for lipoprotein lipase: Study of factors relevant to spontaneous lipolysis in milk. J. Dairy Sci., 70, 499–505.Google Scholar
  104. Traber, M.G., Olivecrona, T. and Kayden, H.J. (1985) Bovine milk lipoprotein lipase transfers tocopherol to human fibroblasts during triglyceride hydrolysis in vitro. J. Clin. Invest., 75, 1729–34.Google Scholar
  105. Tume, R.K. and Morton, DJ. (1991) Primary structure of ovine apolipoprotein CII and the production of antibodies directed towards a synthetic fragment (residues 46-59). Biochem. Int., 25, 159–66.Google Scholar
  106. van Tilbeurgh, H., Sarda, L., Verger, R. and Cambillau, C. (1992) Structure of the pancreatic lipase-colipase complex. Nature, 359, 159–62.Google Scholar
  107. van Tilbeurgh, H., Roussel, A., Lalouel, J.-M. and Cambillau, C. (1994) Lipoprotein lipase. Molecular model based on the pancreatic lipase X-ray structure: consequences for heparin binding and catalysis. J. Biol. Chem., 269, 4626–33.Google Scholar
  108. Verger, R. and deHaas, G.H. (1976) Interfacial enzyme kinetics of lipolysis. Ann. Rev. Biophys. Bioeng., 5, 77–117.Google Scholar
  109. Wallinder, L., Bengtsson, G. and Olivecrona, T. (1982) Purification and properties of lipoprotein lipase in guinea pig milk. Biochim. Biophys. Acta, 711, 107–13.Google Scholar
  110. Wei, C, Tsao, Y., Robberson, D.L., Gotto, A.M., Brown, K. and Chan, L. (1985) The structure of the human apolipoprotein C-II gene. J. Biol. Chem., 260, 15211–21.Google Scholar
  111. Whitted, B.E., Castle, C.K., Polites, H.G., Melchior, G.W. and Marotti, K.R. (1989) Purification, cloning and nucleotide sequence determination of cynomolgus monkey apolipoprotein C-II: comparison to the human sequence. Mol. Cell. Biochem., 90, 69–79.Google Scholar
  112. Wong, H., Yang, D., Hill, J.S., Davis, R.C., Nikazy, J. and Schotz, M.C. (1997) A molecular biology-based approach to resolve the subunit orientation of lipoprotein lipase. Proc. Natl. Acad. Sci. USA, 94, 5594–8.Google Scholar
  113. Yang, C.Y., Gu, Z.W., Yang, H.X., Rohde, M.F., Gotto, A.M., Jr. and Pownall, H.J. (1989) Structure of bovine milk lipoprotein lipase. J. Biol. Chem., 264, 16822–7.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • T. Olivecrona
  • S. Vilaró
  • G. Olivecrona

There are no affiliations available

Personalised recommendations