Skip to main content

Numerical Techniques for Modeling Ultrasound Systems

  • Chapter
Acoustical Imaging

Part of the book series: Acoustical Imaging ((ACIM,volume 23))

  • 490 Accesses

Abstract

The relationship between the electrical output signal from an ultrasound pulse-echo system and the features of the reflecting structure or interface is complex, yet the ability to model the complete electro-acoustic interaction between an ultrasound system and a reflecting structure is essential for the development of quantitative ultrasound measurement techniques. A number of variables affect the electrical output signal: i) parameters of the transmitting and receiving transducers (geometry, aperture size, frequency response and excitation signal), ii) properties of the medium (density, speed of sound, absorption and scattering), and iii) features of the reflecting structure (size, shape, surface characteristics, orientation, and location).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. X. Chen, K.Q. Schwarz and K. Parker, Acoustic coupling from a focused transducer to a flat plate and back to the transducer, J. Acoust. Soc. Am., 95:3049(1994).

    Article  ADS  Google Scholar 

  2. S. McLaren and J.P. Weight, Transmit-receive mode responses from finite-sized targets in fluid media, J. Acoust. Soc. Am., 82:2102(1987).

    Article  ADS  Google Scholar 

  3. A. Lhemery, Impulse-response method to predict echo responses from targets of complex geometry. Part I: Theory, J. Acoust. Soc. Am., 90:2799(1991).

    Article  ADS  Google Scholar 

  4. A. Lhemery and R. Raillon, Impulse-response method to predict echo responses from targets of complex geometry. Part II: Computer implement, and exper. verification, J. Acoust. Soc. Am., 95:1790(1994).

    Article  ADS  Google Scholar 

  5. R. Lerch, H. Landes, and H.T. Karman, Finite element modeling of the pulse-echo behavior of ultrasound transducers, Ultrasonics Symp Proc, Cannes, France, Nov. 1994, 1021.

    Google Scholar 

  6. I. Lifshitz, P.C. Pedersen, and P.A. Lewin, The reconstruction of the acoustic impedance profile of a multilayer medium, Ultrasound Imag, 14:40(1992).

    Article  Google Scholar 

  7. D.P. Orofino and P.C. Pedersen, Angle-dependent spectral distortion for an infinite planar fluid-fluid interface, J. Acoust. Soc. Am., 92:2883(1992).

    Article  ADS  Google Scholar 

  8. D.P. Orofino and P.C. Pedersen, Multirate digital signal processing algorithm to calculate complex acoustic pressure fields, J. Acoust. Soc. Am., 92:563(1992).

    Article  ADS  Google Scholar 

  9. P.C. Pedersen and D.P. Orofino, “Modeling of received ultrasound signals from finite planar targets,” IEEE Trans UFFC, 43:303(1996).

    Article  Google Scholar 

  10. P.C. Pedersen and D. Orofino, Modeling of received signals from finite reflectors in pulse-echo ultrasound, 1994 IEEE Ultrasonics Symp Proceedings, Cannes, France, Nov. 1994, 1177.

    Google Scholar 

  11. D.P. Orofino and P.C. Pedersen, Efficient angular spectrum decomposition for acoustic sources. Part I: Theory, IEEE Trans UFFC, 40:238(1993).

    Article  Google Scholar 

  12. D.P. Orofino and P.C. Pedersen, Efficient angular spectrum decomposition for acoustic sources. Part II: Results, IEEE Trans UFFC, 40:250(1993).

    Article  Google Scholar 

  13. S.K. Jespersen, P.C. Pedersen, and J.E. Wilhjelm, “Modeling of received signals from interfaces of arbitrary geometry,” 1995 IEEE Ultrasonics Symp Proc, Seattle, WA, Nov. 1995, 1561.

    Google Scholar 

  14. P.C. Pedersen and S.K. Jespersen, “The diffraction response interpolation method. Part I: Theoretical foundation,” submitted to IEEE Trans UFFC, 1996.

    Google Scholar 

  15. S.K. Jespersen, P.C. Pedersen and J.E. Wilhjelm, “The diffraction response interpolation method. Part II: Implementation and results,” submitted to IEEE Trans UFFC, August, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pedersen, P.C. (1997). Numerical Techniques for Modeling Ultrasound Systems. In: Lees, S., Ferrari, L.A. (eds) Acoustical Imaging. Acoustical Imaging, vol 23. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8588-0_60

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8588-0_60

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4640-1

  • Online ISBN: 978-1-4419-8588-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics