Numerical Techniques for Modeling Ultrasound Systems

  • Peder C. Pedersen
Part of the Acoustical Imaging book series (ACIM, volume 23)

Abstract

The relationship between the electrical output signal from an ultrasound pulse-echo system and the features of the reflecting structure or interface is complex, yet the ability to model the complete electro-acoustic interaction between an ultrasound system and a reflecting structure is essential for the development of quantitative ultrasound measurement techniques. A number of variables affect the electrical output signal: i) parameters of the transmitting and receiving transducers (geometry, aperture size, frequency response and excitation signal), ii) properties of the medium (density, speed of sound, absorption and scattering), and iii) features of the reflecting structure (size, shape, surface characteristics, orientation, and location).

Keywords

Attenuation Convolution Acoustics Huygens Lewin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Chen, K.Q. Schwarz and K. Parker, Acoustic coupling from a focused transducer to a flat plate and back to the transducer, J. Acoust. Soc. Am., 95:3049(1994).ADSCrossRefGoogle Scholar
  2. 2.
    S. McLaren and J.P. Weight, Transmit-receive mode responses from finite-sized targets in fluid media, J. Acoust. Soc. Am., 82:2102(1987).ADSCrossRefGoogle Scholar
  3. 3.
    A. Lhemery, Impulse-response method to predict echo responses from targets of complex geometry. Part I: Theory, J. Acoust. Soc. Am., 90:2799(1991).ADSCrossRefGoogle Scholar
  4. 4.
    A. Lhemery and R. Raillon, Impulse-response method to predict echo responses from targets of complex geometry. Part II: Computer implement, and exper. verification, J. Acoust. Soc. Am., 95:1790(1994).ADSCrossRefGoogle Scholar
  5. 5.
    R. Lerch, H. Landes, and H.T. Karman, Finite element modeling of the pulse-echo behavior of ultrasound transducers, Ultrasonics Symp Proc, Cannes, France, Nov. 1994, 1021.Google Scholar
  6. 6.
    I. Lifshitz, P.C. Pedersen, and P.A. Lewin, The reconstruction of the acoustic impedance profile of a multilayer medium, Ultrasound Imag, 14:40(1992).CrossRefGoogle Scholar
  7. 7.
    D.P. Orofino and P.C. Pedersen, Angle-dependent spectral distortion for an infinite planar fluid-fluid interface, J. Acoust. Soc. Am., 92:2883(1992).ADSCrossRefGoogle Scholar
  8. 8.
    D.P. Orofino and P.C. Pedersen, Multirate digital signal processing algorithm to calculate complex acoustic pressure fields, J. Acoust. Soc. Am., 92:563(1992).ADSCrossRefGoogle Scholar
  9. 9.
    P.C. Pedersen and D.P. Orofino, “Modeling of received ultrasound signals from finite planar targets,” IEEE Trans UFFC, 43:303(1996).CrossRefGoogle Scholar
  10. 10.
    P.C. Pedersen and D. Orofino, Modeling of received signals from finite reflectors in pulse-echo ultrasound, 1994 IEEE Ultrasonics Symp Proceedings, Cannes, France, Nov. 1994, 1177.Google Scholar
  11. 11.
    D.P. Orofino and P.C. Pedersen, Efficient angular spectrum decomposition for acoustic sources. Part I: Theory, IEEE Trans UFFC, 40:238(1993).CrossRefGoogle Scholar
  12. 12.
    D.P. Orofino and P.C. Pedersen, Efficient angular spectrum decomposition for acoustic sources. Part II: Results, IEEE Trans UFFC, 40:250(1993).CrossRefGoogle Scholar
  13. 13.
    S.K. Jespersen, P.C. Pedersen, and J.E. Wilhjelm, “Modeling of received signals from interfaces of arbitrary geometry,” 1995 IEEE Ultrasonics Symp Proc, Seattle, WA, Nov. 1995, 1561.Google Scholar
  14. 14.
    P.C. Pedersen and S.K. Jespersen, “The diffraction response interpolation method. Part I: Theoretical foundation,” submitted to IEEE Trans UFFC, 1996.Google Scholar
  15. 15.
    S.K. Jespersen, P.C. Pedersen and J.E. Wilhjelm, “The diffraction response interpolation method. Part II: Implementation and results,” submitted to IEEE Trans UFFC, August, 1996.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Peder C. Pedersen
    • 1
  1. 1.Dept. of Electrical and Computer EngineeringWorcester Polytechnic InstituteWorcesterUSA

Personalised recommendations