Collagen-Based Prostheses for Hernia Repair

  • Wachem P. B. van 
  • Gulik T. M. van 
  • Luyn M. J. A. van 
  • Bleichrodt Robert P. 


Closure of abdominal wall defects is still a major surgical problem. The usual methods have significant disadvantages. If the defect is bridged by prosthetic material, nonabsorbable prostheses have produced the best results. However, the presence of prosthetic material may lead to eventual complications due to foreign body reaction, lack of fixation to the surrounding host tissues, or erosion of the viscera and overlying skin. Moreover, synthetic meshes require skin cover, are prone to infection, and cannot be used in a contaminated environment.


Hernia Repair Dura Mater Ventral Hernia Abdominal Wall Defect Biomed Mater 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Simmermacher RKJ, Bleichrodt RP, Schakenraad JM. Review: biomaterials for abdominal wall reconstruction. Cells Mater. 1992;2:281–290.Google Scholar
  2. 2.
    Bleichrodt RP, Simmermacher RK, van der Lei B, et al. Expanded polytetrafluoroethylene patch versus polypropylene mesh for the repair of contaminated defects of the abdominal wall. Surg Gynecol Obstet. 1993; l76(1):18–24.Google Scholar
  3. 3.
    Nimni ME, Harkness RD. Molecular structure and functions of collagen. In Nimni ME (ed): Collagen, vol. 1. Boca Raton, FL: CRC Press Inc.; 1988.Google Scholar
  4. 4.
    Stenzel KH, Miyata T, Rubin AL. Collagen as a biomaterial. Annu Rev Biophys Bioeng. 1974;3:231–253.PubMedCrossRefGoogle Scholar
  5. 5.
    Loewe O. Über Hauttransplantation an Stelle der freien Fascienplastik. Munch Med Wochenschr. 1913;60:1320.Google Scholar
  6. 6.
    Rehn E. Das kutane und subkutane Bindegewebe als plastisches Material. Munch Med Wochenschr. 1914;61:118–121.Google Scholar
  7. 7.
    Janov VN. Autodermal hernioplasty of big and gigantic incisional and umbilical hernias. 1978, as cited by Korenkov (ref. 14).Google Scholar
  8. 8.
    Kranich H. Behandlung grosser Narben-und Bauchwandhernien mit einer Modifikation der Kutislappenplastik nach A Rehn. Æ Chir. 1990; 115:301–309.Google Scholar
  9. 9.
    Gosset J. Bandes de peau totale comme matériel de suture autoplastique en chirurgie. Chirurgie. 1949;75:277–279.Google Scholar
  10. 10.
    Kozuschek W, Farazandeh F. Behandlung monströssere Bauchwandhernien. Langenbecks Arch Chir. 1983;361:329–323.CrossRefGoogle Scholar
  11. 11.
    Wesselhöft R. Cutisplastik nach Rehn und Infektion. Arch Klin Chir. 1959;291:162–170.PubMedGoogle Scholar
  12. 12.
    Rehn E. Über die funktionelle Anpassung des Bindegewebes im chirurgischen Geschehen. Anat Anz. 1931;72:133–152.Google Scholar
  13. 13.
    Reith HB, Dittrich H, Kozuschek W. Morphologie und Einleitung der Kutisplastik bei Bauchwanddefekten. Langenbecks Arch Chir. 1994;379: 13–19.PubMedCrossRefGoogle Scholar
  14. 14.
    Korenkov M, Eypasch E, Paul A, et al. Autodermale Hernioplastik—eine seltene und unbekannte technik. Zentralblatt Chir. 1997;122:871–878.Google Scholar
  15. 15.
    Rehn E. Das kutane und subkutane Bindegewebe als plastisches Material. Munch Med Wochenschr. 1914;61:118–121.Google Scholar
  16. 16.
    Peacock EE. Subcutaneous extraperitoneal repair of ventral hernias: a biological basis for fascial transplantation. Ann Surg. 1975;181: 722–727.PubMedCrossRefGoogle Scholar
  17. 17.
    McArthur LL. Autoplastic sutures in hernia and other diseases: preliminary report. JAMA. 1901;37:1162.CrossRefGoogle Scholar
  18. 18.
    Gallie WE, Le Mesurier AB. Living sutures in the treatment of hernia. Can Med Assoc J. 1923;13:469.PubMedGoogle Scholar
  19. 19.
    Kirschner M. Über freie Sehne-und Fascientransplantation. Bruns Beitr Klin Chir. 65:472.Google Scholar
  20. 20.
    Pau HW. Revascularization of fascia after tympano-plastic grafts: a study by fluorescein angiography. Arch Otorhinolaryngol. 1984;239:7–13.PubMedCrossRefGoogle Scholar
  21. 21.
    Disa JJ, Klein MH, Goldberg NH. Advantages of autologous fascia versus synthetic patch abdominal reconstruction in experimental animal defects. Plast Reconstr Surg. 1996;97:801–806.PubMedCrossRefGoogle Scholar
  22. 22.
    Guerrerosantos J. Temporoparietal free fascia grafts in rhinoplasty. Plast Reconstr Surg. 1984;74:465–475.PubMedCrossRefGoogle Scholar
  23. 23.
    Orlando F, Weiss JS, Beyer-Machule CK, et al. Histopathological condition of fascia lata implant 42 years after ptosis repair. Arch Ophthalmol. 1985;103:1518–1519.PubMedCrossRefGoogle Scholar
  24. 24.
    Das SK, Davidson SF, Walker BL, et al. The fate of free autogenous fascial grafts in the rabbit. Br J Plast Surg. 1990;43:315–317.PubMedCrossRefGoogle Scholar
  25. 25.
    Matloub HS, Jensen P, Grunert BK, Sanger JR, Yousif NJ. Characteristics of prosthetic mesh and autogenous fascia in abdominal wall reconstruction after prolonged implantation. Ann Plast Surg. 1992;29: 508–511.PubMedCrossRefGoogle Scholar
  26. 26.
    Hamilton JE. Free mattressed fascia lata patches in the repair of large abdominal incisional hernias. Am Surg. 1956;22:217–221.PubMedGoogle Scholar
  27. 27.
    Hamilton JE. The repair of large or difficult hernias with mattressed onlay grafts of fascia lata: a 21-year experience. Ann Surg. 1968;167(1): 85–90.PubMedCrossRefGoogle Scholar
  28. 28.
    Williams JK, Carlson GW, de Chalain T, et al. Role of tensor fasciae latae in abdominal wall reconstruction. Plast Reconstr Surg. 1998; 101(3):713–718.PubMedCrossRefGoogle Scholar
  29. 29.
    Sewell WH, Koth DR, Pate JW, et al. The present status of our experiments with freeze-dried grafts. Navy Med Res Inst Rep. No. 1995; MM 1007-081-10-14 13:291–304.Google Scholar
  30. 30.
    Noort R van, Black MM, Martin TRP, et al. A study of the uniaxial mechanical properties of human dura-mater preserved in glycerol. Biomatrials. 1981;2:41–45.CrossRefGoogle Scholar
  31. 31.
    Jarrel MA, Malinin TI, Averette HE, Girtanneer RE, et al. Human dura mater allografts in repair of pelvic floor and abdominal wall defects. Surg Gynecol Obstet. 1987;70(2):280–285.Google Scholar
  32. 32.
    Prolo DJ. Use of transplantable tissue in neurosurgery. Clin Neurosurg. 1981;28:407–417.PubMedGoogle Scholar
  33. 33.
    Miyashita K, Inuzuka T, Kondo H, et al. Creutzfeldt-Jakob disease in a patient with cadaveric dural graft. Neurology. 1991;41:940–941.PubMedCrossRefGoogle Scholar
  34. 34.
    Thadani V, Penar PL, Partington J, Kalb R, et al. Creutzfeldt-Jakob disease probably acquired from a cadaveric dura mater graft. J Neurosurg. 1988;69:766–769.PubMedCrossRefGoogle Scholar
  35. 35.
    Nisbet TJ, MacDonaldson I, Bishara SN. Creutzfeldt-Jakob disease in a second patient who received a cadaveric dura mater graft. Morbid Mortal Weekly Rep. 38:37–43.Google Scholar
  36. 36.
    Masullo C, Pocchiari M, Macchi G, et al. Transmission of Creutzfeldt-Jakob disease by dural cadaveric graft [letter]. J Neurosurg. 1989;71: 954–955.PubMedGoogle Scholar
  37. 37.
    Marx RE, Carlson ER: Creutzfeldt-Jakob disease from allogeneic dura: a review of risk and safety. J Oro-maxillofac Surg. 1991;49:272–274.CrossRefGoogle Scholar
  38. 38.
    Committee on health care issues, American Neurological Association. Precautions in handling tissues, fluids and other contaminated materials from patients with documented or suspected Creutzfeldtjakob disease. Ann Neurol. 1986;10:75–77.Google Scholar
  39. 39.
    Pesch HJ, Stoss H. The solvent dried dura mater. A new dura transplant in the animal experiment. Chirurgie. 1977;48:732–736.Google Scholar
  40. 40.
    Wojtyczka A. Verschluss eines ausgedehnten Bauchwanddefektes mit einem implantat konservierter Dura mater im Tierversuch. Mechanische und morphologische Untersuchungen. Æ Exp Chir Transplant Kunstl Organe. 1989;22:330–336.Google Scholar
  41. 41.
    Waldschmidt J, Berlien N Technisches Vorgehen bei der Anwendung von lyophilisierter Dura zum Verschluss grosser Körperwanddefekte. Z Kinderchir. 1983;38:114–120.PubMedGoogle Scholar
  42. 42.
    Heiming E, Jerusalem CR. Langzeiterfahrungen mit lyophilisierter Weichdura als Bindegewebeersatz in der Kinderchirurgie. Z Kinderchir. 1989;44:67–71.PubMedGoogle Scholar
  43. 43.
    Klein P, Hüm mer HP, Wellert S, Faber TH. Short term and long term problems after duraplastic enlargement of anterior abdominal wall. Eur J Pediatr Surg. 1991;1:88–91.PubMedCrossRefGoogle Scholar
  44. 44.
    Root M, Lockhardt JL, Vorstman A, et al. Long-term follow up with the use of lyophilized dura mater for abdominal wall closure in children: report of three cases. J Urol. 1992;148:858–860.PubMedGoogle Scholar
  45. 45.
    Oliver RF, Grant RA, Kent CM. The fate of cutaneously and subcutaneously implanted trypsin purified dermal collagen in the pig. Br J Exp Pathol. 1972;53:540–549.PubMedGoogle Scholar
  46. 46.
    Shuck JM. The use of heteroplastic grafts. Burns. 1975;2:47.CrossRefGoogle Scholar
  47. 47.
    Woodroof EA. Use of glutaraldehyde and formaldehyde to process tissue heart valves. J Bioengin. 1978;2.Google Scholar
  48. 48.
    Miller EJ. Collagen types: structure, distribution and functions. In Nimni ME (ed): Collagen, vol. 1. Boca Raton, FL: CRC Press, Inc.; 1988.Google Scholar
  49. 49.
    Brown IA. Scanning electron microscopy of human dermal fibrous tissue. J Anat. 1972;113:159–168.PubMedGoogle Scholar
  50. 50.
    Van Gulik TM, Klopper PJ. The structural features of processed sheepskin splits, as viewed in conjunction with various histological and microscopic techniques. J Soc Leather Technologists Chemists. 1987;71:7–9.Google Scholar
  51. 51.
    Heidemann E. The current state of collagen chemistry in relation to the manufacture of leather. In Parry DAD, Creamer LK (eds): Fibrous proteins: scientific, industrial and medical aspects. London: Academic Press; 1979.Google Scholar
  52. 52.
    Roe SC, Milthorpe BK, Schindhelm K. Collagen cross-linking and resorption: effect of glutaraldehyde concentration. Artif Organs. 1990; 14:443–448.PubMedCrossRefGoogle Scholar
  53. 53.
    Coleman DL, King RN, Andrade JD. The foreign body reaction: a chronic inflammatory response. J Biomed Mater Res. 1974;8:199–211.PubMedCrossRefGoogle Scholar
  54. 54.
    Van Gulik TM, Klopper PJ. The processing of sheepskin for use as a dermal collagen graft. Neth J Surg. 1987;39:90–94.PubMedGoogle Scholar
  55. 55.
    Van Gulik TM, Klopper PJ. The mechanical properties of sheepskin splits as determined by an experimental method. J Soc Leather Technologists Chemists. 1987;71:38–42.Google Scholar
  56. 56.
    Van Gulik TM, Klopper PJ. Studies on the shrinkage temperature and mechanical properties of gamma-irradiated sheepskin splits. J Soc Leather Technologists Chemists. 1987;71:75–79.Google Scholar
  57. 57.
    Van Gulik TM, Christiano RA, Broekhuizen AH, et al. A tanned sheep dermal graft as a dressing for split-skin graft donor sites. Neth J Surg. 1989;41:65–67.PubMedGoogle Scholar
  58. 58.
    Van Luyn MJA, van Wachem PB, Olde Damink L, et al. Methylcellulose culture as a new cytotoxicity test system for biomaterials. Mater Med. 1991;2:142–148.CrossRefGoogle Scholar
  59. 59.
    Van Luyn MJA, van Wachem PB. Cytotoxicity testing of biomaterials using methylcellulose cell culture. S.T.P. Pharma Sci. 1993;3(1):35–45.Google Scholar
  60. 60.
    Van Luyn MJA, van Wachem PB, Olde Damink L, et al. Relations between in vitro cytotoxicity and cross-linked dermal sheep collagen. J Biomed Mater Res. 1992;26(8):1091–1110.PubMedCrossRefGoogle Scholar
  61. 61.
    Van Luyn MJA, van Wachem PB, Olde Damink PJ, et al. Secondary cytotoxicity of (cross-linked) dermal sheep collagen during repeated exposure to human fibroblasts. Biomaterials. 1992;13(14):1017–1024.PubMedCrossRefGoogle Scholar
  62. 62.
    Van Wachem PB, van Luyn MJA, Olde Damink L, et al. Tissue interactions with dermal sheep collagen implants: a transmission electron microscopic evaluation. Cells Mater. 1991;l(3):251–263.Google Scholar
  63. 63.
    Olde Damink LHH, Dijkstra PJ, van Luyn MJA, et al. Glutaraldehyde as a cross-linking agent for collagen-based biomaterials. J Mater Sci Mater Med. 1995;6:460–472.CrossRefGoogle Scholar
  64. 64.
    Olde Damink LHH, Dijkstra PJ, van Luyn MJA, et al. Influence of ethylene oxide gas treatment on the in vitro degradation behaviour of dermal sheep collagen. J Biomed Mater Res. 1995;29(2):149–155.PubMedCrossRefGoogle Scholar
  65. 65.
    Olde Damink LHH, Dijkstra PJ, van Luyn MJA, et al. Cross-linking of dermal sheep collagen using hexamethylenediisocyanate. J Mater Sci Mater Med. 1995;6:429–434.CrossRefGoogle Scholar
  66. 66.
    Olde Damink LHH, Dijkstra PJ, van Luyn MJA, et al. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials. 1996;17(8):765–773.PubMedCrossRefGoogle Scholar
  67. 67.
    Olde Damink LHH, Dijkstra PJ, van Luyn MJA, et al. Changes in the mechanical properties of dermal sheep collagen during in vitro degradation. J Biomed Mater Res. 1995;29(2):139–147.PubMedCrossRefGoogle Scholar
  68. 68.
    Van Wachem PB, van Luyn MJA, Olde Damink L, et al. Biocompatibility and tissue regenerating capacity of cross-linked dermal sheep collagens. J Biomed Mater Res. 1994;28:353-363.Google Scholar
  69. 69.
    Van Luyn MJA, van Wachem PB, Olde Damink LHH, et al. Calcification of different cross-linked collagens during subcutaneous implantation. J Mater Sci Mater Med. 1995;6:288–296.CrossRefGoogle Scholar
  70. 70.
    Van der Laan JS, Lopez GP, van Wachem PB,et al. TFE-plasma polymerized dermal sheep collagen for the repair of abdominal wall defects. Int J Artif Organs. 1991;14(10):661–666.PubMedGoogle Scholar
  71. 71.
    Van Wachem PB, van Luyn MJA, Olde Damink L, et al. Tissue regenerating capacity of carbodiimide-cross-linked dermal sheep collagen during repair of the abdominal wall. Int J Artif Organs. 1994;17(4): 230–239.PubMedGoogle Scholar
  72. 72.
    Van Wachem PB, van Luyn MJA, Ponte da Costa ML. Myoblast seeding in a collagen matrix evaluated in vitro. J Biomed Mater Res. 1996; 30:353–360.PubMedCrossRefGoogle Scholar
  73. 73.
    Van Wachem PB, Brouwer LA, van Luyn MJA. Absence of muscle regeneration after implantation of a collagen matrix seeded with myoblasts. Biomaterials. 1999;20:419–426.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Wachem P. B. van 
    • 1
  • Gulik T. M. van 
    • 2
  • Luyn M. J. A. van 
    • 1
  • Bleichrodt Robert P. 
    • 3
  1. 1.Department of Pathology, Laboratory Medicine, Medical BiologyUniversity of GroningenGroningenThe Netherlands
  2. 2.Department of SurgeryAcademic Medical CenterAmsterdamThe Netherlands
  3. 3.Department of SurgeryNijmegen University Medical CenterNijmegenThe Netherlands

Personalised recommendations