Skip to main content

Biomaterials Pathology

  • Chapter
Abdominal Wall Hernias

Abstract

The modern era of biomaterials was born with the discovery of antibiotics in the mid-twentieth century. Antibiotics enabled surgeons to control the bacteria that invariably settled on a medical device from the operating room atmosphere immediately before implantation. Once bacteria were under control, differences among various materials and the biological responses they provoked became apparent, and the need to develop materials that exhibited improved “biocompatibility” emerged. In this chapter, we present a brief but comprehensive review of the essential factors contributing to biomaterials and their induced biological response, which we term bioreactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McManus BM, Radio SJ, Schoen FJ. Pathology of host-prosthetic interactions. Short course #17._Chicago: United States and Canadian Academy of Pathology; 1991.

    Google Scholar 

  2. Elek SD, Cohen PE. The virulence of the stapplylococcus pyogenes for man: a study on the problems of wound infection. Br J Exp Path. 1957;38:573–586.

    CAS  Google Scholar 

  3. MacNamara A, Williams DF. Response to intramuscular implantation of pure metal. Biomaterials. 1982;2:33–40.

    Article  Google Scholar 

  4. Aginis HJ, Alcock NW, Bansai M, et al. Metallic wear in failed titanium-alloy total hip replacement: a histologic and quantitative analysis. J Bone Joint Surg. 1988;70:347–356.

    Google Scholar 

  5. Poss R, Thornhill TS, Ewald FC, et al. Factors influencing the incidence and outcome of infection following total joint arthroplasty. Clin Orthop. 1984;182:117–126.

    PubMed  Google Scholar 

  6. Jones EC, Insall JN, Inglis AE, et al. Guepar knee arthroplasty results and late complications. Clin Orthop. 1979;140:145–152.

    PubMed  Google Scholar 

  7. Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987;237:1588–1595.

    Article  PubMed  CAS  Google Scholar 

  8. IARC Interagency Staff Group. Chemical carcinogenesis. Environ Health Perspect. 1986;67:201–282.

    Google Scholar 

  9. Pitot HC, Dragan YP. Facts and theories concerning the mechanisms of carcinogenesis. FASEB J. 1992;5:2280–2286.

    Google Scholar 

  10. Page NP, Glaser ZR. Evaluation of implanted materials for carcinogenic potential. In Lewis RJ (ed): Carcinogenetically active chemicals: a reference guide. New York: Van Nostrand; 1990:29–42.

    Google Scholar 

  11. Casey DJ, Lewis OG. Absorbable and nonabsorbable sutures. In von Recum A (ed): Handbook of biomaterials evaluation. New York: Macmillan; 1986:86–94.

    Google Scholar 

  12. Tyrell J, Silberman H, Chandrasoma P, et al. Absorbable versus permanent mesh in abdominal operations. Surg Gynecol Obstet. 1989; 168(3):227–232.

    PubMed  CAS  Google Scholar 

  13. Usher FC, Wallace SA. Tissue reactions to plastics: a comparison of nylon, Orion, Dacron, Teflon and Marlex. Arch Surg. 1958;76:997–999.

    Article  CAS  Google Scholar 

  14. Usher FC. Marlex mesh: a new plastic prosthesis for repairing tissue defects of the chest and abdominal wall. Am J Surg. 1959;97:629–633.

    Article  PubMed  CAS  Google Scholar 

  15. Usher FC, Fried JG, Ochsner JL, et al. Marlex mesh, a new plastic mesh for replacing tissue defects. Arch Surg. 1959;78:138–145.

    Article  CAS  Google Scholar 

  16. Amid PK, Shulman AG, Lichtenstein IL. Selecting synthetic mesh for the repair of groin hernia. Postgrad Gen Surg. 1992;4(2):150–155.

    Google Scholar 

  17. Usher FC. Hernias of the abdominal wall: principles and management repair with Marlex mesh: an analysis of 541 cases. Arch Surg. 1962; 84:325–328.

    Article  PubMed  CAS  Google Scholar 

  18. Law NW, Ellis H. Adhesion formation and peritoneal healing on prosthetic materials. Clin Mater. 1988;3:95–101.

    Article  Google Scholar 

  19. Dayton MT, Buchele BA, Shirazi SS, et al. Use of an absorbable mesh to repair contaminated abdominal wall defects. Arch Surg. 1986;121: 954–960.

    Article  PubMed  CAS  Google Scholar 

  20. Law NW, Ellis H. A comparison of polypropylene mesh and expanded polytetrafluoroethylene patch for the repair of contaminated abdominal wall defects—an experimental study. Surgery. 1991;109(5):652–655.

    PubMed  CAS  Google Scholar 

  21. Adloff M, Arnaud JP. Surgical management of large incisional hernias by an intraperitoneal Mersilene mesh and an aponeurotic graft. Surg Gynecol Obstet. 1987;165(3):204–206.

    PubMed  CAS  Google Scholar 

  22. Lamb JP, Vitale O, Kaminski DL. Comparative evaluation of synthetic meshes used for abdominal wall replacement. Surgery. 1983;93:643–648.

    PubMed  CAS  Google Scholar 

  23. Walker PM, Langer B. Marlex mesh for repair of abdominal wall defects. Can J Surg. 1976;19:211–213.

    PubMed  CAS  Google Scholar 

  24. Gilbert AI. Overnight hernia repair: updated considerations. South Med J. 1987;80(2):19:211–213.

    Google Scholar 

  25. Johnson PC, Persons ML, Schulak JA. A technique for early wound management using polypropylene mesh reconstruction of the abdominal wall. Surg Gynecol Obstet. 1988;167(5):435–436.

    PubMed  CAS  Google Scholar 

  26. Kambouris A. Full-thickness abdominal wall resection for recurrent and metastatic neoplasms. A report of three cases. Am Surg. 1988; 54(6):356–360.

    PubMed  CAS  Google Scholar 

  27. Lewis RT. Knitted polypropylene (Marlex) in the repair of incisional hernias. Can J Surg. 1984;27(2):155–157.

    PubMed  CAS  Google Scholar 

  28. Kaufman M, Weissberg D, Bider D. Repair of recurrent inguinal hernia with Marlex mesh. Surg Gynecol Obstet. 1985;160:505–506.

    PubMed  CAS  Google Scholar 

  29. Smith RS. The use of prosthetic materials in the repair of hernias. Surg Clin North Am. 1971;51:1387–1399.

    PubMed  CAS  Google Scholar 

  30. Frienkel Z, Schein M. Mesh in contaminated abdominal wall defects. Letter. Br J Surg. 1987;74(7):655.

    Article  PubMed  CAS  Google Scholar 

  31. Aureggi A, Virno F. Outpatient surgery of inguinal and crural hernias: a report on 468 cases. Ital J Surg Sci. 1988;18(4):365–368.

    PubMed  CAS  Google Scholar 

  32. Jones JW, Jurgovich GJ. Polypropylene mesh closure of infected abdominal wall defects. Letter. Am J Surg. 1989;55(1):73–76.

    CAS  Google Scholar 

  33. Lichtenstein IL, Shulman AG, Amid PK, et al. The tension-free hernioplasty. Am J Surg. 1989;157:188–193.

    Article  PubMed  CAS  Google Scholar 

  34. Molloy RG, Moran KT, Waldron RP, et al. Massive incisional hernia: abdominal wall replacement with Marlex mesh. Br J Surg. 1991;78(2): 242–244.

    Article  PubMed  CAS  Google Scholar 

  35. Uemura H, Kinoshita Y, Kubota Y, et al. Use of polypropylene mesh for abdominal wall defect in surgery of advanced urachus carcinoma. Urol Int. 1988;43(2):102–103.

    Article  PubMed  CAS  Google Scholar 

  36. Ezra Y, Krausz MM, Rivkind A, et al. Successful pregnancy and normal delivery with Marlex mesh replacement of the abdominal wall. Am J Obstet Gynecol. 1990;162(1):97–98.

    PubMed  CAS  Google Scholar 

  37. James NL, Poole-Warren LA, Schindhelm E, et al. Comparative evaluation of treated bovine pericardium as a xenograft for hernia repair. Biomaterials. 1991;12(9):801–809.

    Article  PubMed  CAS  Google Scholar 

  38. Fry DE, Osler T. Abdominal wall considerations and complications in reoperative surgery. Surg Clin North Am. 1991;71(1):1–11.

    PubMed  CAS  Google Scholar 

  39. Condon RE, Nichols RL, Fabian T, et al. Antibiotics in overwhelming sepsis. Contemp Surg. 1987;30:69–102.

    Google Scholar 

  40. Cerise EJ, Busuttil RW, Craighead CC, et al. The use of Mersilene mesh in repair of abdominal wall hernias. Comment by Asher R. McOmb and M. Bert Myers. Ann Surg. 1975;181:728–734.

    Google Scholar 

  41. Chu CC, Welch L. Characterization of morphologic and mechanical properties of surgical mesh fabrics. J Biomed Mater Res. 1985;19: 903–916.

    Article  PubMed  CAS  Google Scholar 

  42. Murphy JL, Freeman JB, Dionne PG. Comparison of Marlex and Gore-Tex to repair abdominal wall defects in the rat. Can J Surg. 1989; 32(4):244–247.

    PubMed  CAS  Google Scholar 

  43. Jenkins SD, Klamer TW, Parteka JJ, et al. A comparison of prosthetic materials used to repair abdominal wall defects. Surgery. 1983;94: 392–398.

    PubMed  CAS  Google Scholar 

  44. Hengirman S, Cete M, Soran A, et al. Comparison of meshes for the repair of experimental abdominal wall defects. J Invest Surg. 1998; 11:315–325.

    Article  Google Scholar 

  45. Bellon JM, Bujan J, Contreras L, et al. Macrophage response to experimental implantation of polypropylene prostheses. Eur Surg Res. 1994;26:46–53.

    PubMed  CAS  Google Scholar 

  46. Bellon JM, Bujan J, Contreras L, et al. Tissue response to polypropylene meshes used in the repair of abdominal wall defects. Biomaterials. 1998;19:669–675.

    Article  PubMed  CAS  Google Scholar 

  47. Bellon JM, Bujan J, Contreras L, et al. Integration of biomaterials implanted into abdominal wall: Process of scar formation and macrophage response. Biomaterials. 1995;16:381–387.

    Article  PubMed  CAS  Google Scholar 

  48. Dasdia T, Bazzaco S, Bottero L, et al. Organ culture in 3-dimensional matrix: in vitro model for evaluating biological compliance of synthetic meshes for abdominal repair. J Biomed Mater Res. 1998;43(2):204–209.

    Article  PubMed  CAS  Google Scholar 

  49. Sahin M, Hasandglu A, Erbilen M. Comparison of prosthetic materials used for abdominal wall defects or hernias (an experimental study). Acta Chir Hung. 1995/96;35(3-4):291–295.

    PubMed  Google Scholar 

  50. Brown LB, Richardson JD, Malangoni MA, et al. Comparison of prosthetic materials for abdominal wall reconstruction in the presence of contamination and infection. Ann Surg. 1985;201:705–711.

    Article  PubMed  CAS  Google Scholar 

  51. Stone HH, Fabian TC, Turkleson ML, et al. Management of acute full-thickness losses of the abdominal wall. Ann Surg. 1981;193:612–618.

    Article  PubMed  CAS  Google Scholar 

  52. Ethicon, Inc. (manufacturer of Prolene mesh). Personal communication.

    Google Scholar 

  53. Alexander EL, Szabolcs S, Greenfield LJ. Post-traumatic thoracic aortic aneurysm associated with a diaphragmatic hernia. Ann Thorac Surg. 1985;40:195–198.

    Article  PubMed  CAS  Google Scholar 

  54. Capozzi JA, Berkenfield JA, Cherry JK. Repair of inguinal hernia in the adult with Prolene mesh. Surg Gynecol Obstet. 1988;167(2):124–128.

    PubMed  CAS  Google Scholar 

  55. Wesolow A, Snyder RW. Textiles. In von Recum A (ed): Handbook of biomaterials evaluation. New York: Macmillan; 1986.

    Google Scholar 

  56. Andersen SR. Ethylene oxide toxicity (a study of tissue reactions to retained ethylene oxide). J Lab Clin Med. 1971;77(2):346–356.

    PubMed  CAS  Google Scholar 

  57. Charnley J. Tissue reactions to polytetrafluoroethylene. Lancet. 1963; ii:1379.

    Article  Google Scholar 

  58. Clarke IC. Wear of polymeric prostheses—clinical reality, retrieved implants and laboratory predictions. In Weinstein A, Gibbons D, Brown S et al (eds): NBS Special Publication 601: Implant retrieval: material and biological analysis. Washington, DC: U.S. Department of Commerce, National Bureau of Standards (now National Institute for Standards and Technology); January 1981;47l–499.

    Google Scholar 

  59. Wilert HG, Buchhorn G, Buchhorn U, et al. Tissue response to wear debris in artificial joints. In Weinstein A, Gibbons D, Brown S et al (eds): NBS Special Publication 601: Implant retrieval: material and biological analysis. Washington, DC: U.S. Department of Commerce, National Bureau of Standards (now National Institute for Standards and Technology); January 1981;239–267.

    Google Scholar 

  60. Charnley J. The long-term results of low-friction arthroplasty of the hip performed as a primary intervention. J Bone Joint Surg. 1972; 54B:61–76.

    Google Scholar 

  61. Schoen FJ, Titus JL, Lawrie GM. Materials degeneration causing late failure of mechanical heart valve prostheses: problems and promise. In Weinstein A, Gibbons D, Brown S et al (eds): NBS Special Publication 601: Implant retrieval: material and biological analysis. Washington, DC: U.S. Department of Commerce, National Bureau of Standards (now National Institute for Standards and Technology); January 1981:269–998.

    Google Scholar 

  62. Semlitsch M. Technical progress in artificial hip joints. Sulzer Tech Rev. 1974;4:1–11.

    Google Scholar 

  63. Bauer JJ, Salky BA, Gelernt IM, et al. Repair of large abdominal wall defects with expanded polytetrafluoroethylene (PTFE). Ann Surg. 1987;206(6):765–769.

    Article  PubMed  CAS  Google Scholar 

  64. van der Lei B, Bleichrodt RP, Simmermacher RJK. Expanded polytetrafluoroethylene patch for the repair of large abdominal wall defects. Br J Surg. 1989;76(8):803–805.

    Article  PubMed  Google Scholar 

  65. Pans A, Piérard GE. A comparison of intraperitoneal prostheses for the repair of abdominal muscular wall defects in rats. Eur Surg Res. 1992;24:55–60.

    Article  Google Scholar 

  66. Hamer-Hodges DW, Scott NB. Replacement of an abdominal wall defect using expanded PTFE sheet (Gore-Tex). J R Coll Surg Edinb. 1985;301(1):65–67.

    Google Scholar 

  67. Matloub HS, Jensen P, Grunert BK, et al. Characteristics of prosthetic mesh and autogenous fascia in abdominal wall reconstruction after prolonged implantation. Ann Plast Surg. 1992;29(6):508–511.

    Article  PubMed  CAS  Google Scholar 

  68. Sher W, Pollack D, Paulides CA, et al. Repair of abdominal wall defects: Gore-Tex vs. Marlex graft. Am Surg. 1980;46:618–623.

    PubMed  CAS  Google Scholar 

  69. W.L. Gore & Associates, Inc. (manufacturers of the ePTFE Soft Tissue Patch). Personal communication.

    Google Scholar 

  70. Deysine M. Hernias of the abdominal wall: principles and management of repair with expanded polytetrafluoroethylene. Am J Surg. 1992;163:422–424.

    Article  PubMed  CAS  Google Scholar 

  71. Law NH. The influence of prosthetic materials on the growth of Walker 256 tumour in the rat. Eur J Surg Oncol. 1990;16:237–239.

    PubMed  CAS  Google Scholar 

  72. Postlethwait RW. Long-term comparative study of non-absorbable sutures. Ann Surg. 1970;171:892–898.

    Article  PubMed  CAS  Google Scholar 

  73. Guidon R, King M, Blais P, et al. A biological and structural evaluation of retrieved Dacron arterial prostheses. In Weinstein A, Gibbons D, Brown S, et al. (eds): NBS Special Publication 601: Implant retrieval: material and biological analsysi. Washington, DC: U.S. Department of Commerce, National Bureau of Standards (now National Institute for Standards and Technology); January 1981:29–129.

    Google Scholar 

  74. King MW, Guidon R, Blais P, et al. Degradation of polyester arterial prostheses: a physical or chemical mechanism. In Fraker AC, Griffin CD (eds): Corrosion and degradation of implant materials: second symposium, ASTM STP 859._Philadelphia: American Society for Testing and Materials; 1985;294–307.

    Chapter  Google Scholar 

  75. Sawyer PN, Stanczewski B, Hoskin GP, et al. In vitro and in vivo evaluation of Dacron velour and knit prostheses. J Biomed Mater Res. 1979;13:937–956.

    Article  PubMed  CAS  Google Scholar 

  76. Ethicon, Inc. (manufacturer of Mersilene). Personal communication.

    Google Scholar 

  77. Wantz GE. Incisional hernioplasty with Mersilene. Surg Gynecol Obstet. 1991;172(2):129–137.

    PubMed  CAS  Google Scholar 

  78. Durtz HP, Cha LS. Massive genital and vaginal prolapse treated by abdominal-vaginal sacropexy with the use of Marlex mesh: review of the literature. Am J Obstet Gynecol. 1987;156:387–392.

    Google Scholar 

  79. Adler RH, Mendez M, Darby C. Effects of implanted mesh on the strength of healing wounds. Surgery. 1962;52:898–904.

    PubMed  CAS  Google Scholar 

  80. Ethicon, Inc., Mersilene mesh package insert.

    Google Scholar 

  81. Pans A, Pierard GE. A comparison of intraperitoneal prostheses for the repair of abdominal muscular wall defects in rats. Eur Surg Res. 1992;24:54–60.

    Article  PubMed  CAS  Google Scholar 

  82. Mori N, Takano J, Miyaké T. A comparison of prosthetic materials used to repair abdominal wall defects. Pediatr Surg Int. 1998;13:487–490.

    Article  PubMed  CAS  Google Scholar 

  83. Craig PH, Williams JA, David KW, et al. A biologic comparison of polyglycolic 910 and polyglycolic acid synthetic absorbable sutures. Surg Gynecol Obstet. 1975;141:1–10.

    PubMed  CAS  Google Scholar 

  84. American Cyanamid Company (manufacturers of Dexon mesh). Personal communication.

    Google Scholar 

  85. Brismar B, Pettersson N. Polyglycolic acid (Dexon) mesh graft for abdominal wound support in healing-compromised patients. Acta Chir Scand. 1988;154(9):509–510.

    PubMed  CAS  Google Scholar 

  86. Delany HM, Solanki B, Driscol WD. Use of absorbable mesh for splenorrhaphy and pelvic peritoneum reconstruction. Contemp Surg. 1985; 27(6):11–15.

    Google Scholar 

  87. Kavanah MT, Feldman MI, Devereux DF, et al. New surgical approach to minimize radiation-associated small bowel injury in patients with pelvic malignancies requiring surgery and high-dose irradiation. Cancer 1985;56(6):1300–1304.

    Article  PubMed  CAS  Google Scholar 

  88. Marmon LM, Vinocur CD, Standiford SB, et al. Evaluation of absorbable polyglycolic acid mesh as a wound support. J Pediatr Surg. 1985;20(6):737–742.

    Article  PubMed  CAS  Google Scholar 

  89. Devereux DF, Thompson D, Sandhaus L, et al. Protection from radiation enteritis by an absorbable polyglycolic acid mesh sling. Surgery. 1987;101(2):123–129.

    PubMed  CAS  Google Scholar 

  90. Law NW. A comparison of polypropylene mesh, expanded polytetrafluoroethylene patch and polyglycolic acid mesh for the repair of experimental abdominal wall defects. Acta Chir Scand. 1990;156:759–762.

    PubMed  CAS  Google Scholar 

  91. Ethicon, Inc. (manufacturers of Vicryl). Personal communication.

    Google Scholar 

  92. Ethicon, Inc. (manufacturers of Vicryl). Personal communication.

    Google Scholar 

  93. Hallock GG, Altobelli JA. Polyglactin 910 mesh for support of the donor defect of the double-pedicled rectus abdominis musculocutaneous flap. Ann Plast Surg. 1989;22(4):358–364.

    Article  PubMed  CAS  Google Scholar 

  94. Clarke-Pearson DL, Soper JT, Creasman WT. Absorbable synthetic mesh (polyglactin 910) for the formation of a pelvic “lid” after radical pelvic resection. Am J Obstet Gynecol. 1988;158(1):158–161.

    PubMed  CAS  Google Scholar 

  95. Gainant A, Boudinet F, Cubertafond P. Prevention of postoperative wound dehiscence in high risk patients. A randomized comparison of internally applied resorbable polyglactin 910 mesh and externally applied polyamide fiber mesh. Int Surg. 1989;74(1):55–57.

    PubMed  CAS  Google Scholar 

  96. Kossovsky N, Millet D, Juma S, et al. In vivo characterization of the inflammatory properties of poly(tetrafluoroethylene) particulates. J Biomed Mater Res. 1991;25:1287–1301.

    Article  PubMed  CAS  Google Scholar 

  97. Berliner SD. Clinical experience with an inlay expanded polytetrafluoroethylene soft tissue patch as an adjunct in inguinal hernia repair. Surg Gynecol Obstet. 1993;176:323–326.

    PubMed  CAS  Google Scholar 

  98. Simmermacher RKJ, van der Lei B, Schakenraad JM, et al. Improved tissue ingrowth and anchorage of expanded polytetrafluoroethylene by perforation: an experimental study in the rat. Biomaterials. 1991; 12:22–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kossovsky, N., Freiman, C.J., Howarth, D. (2001). Biomaterials Pathology. In: Bendavid, R., Abrahamson, J., Arregui, M.E., Flament, J.B., Phillips, E.H. (eds) Abdominal Wall Hernias. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8574-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8574-3_28

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6440-8

  • Online ISBN: 978-1-4419-8574-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics