Skip to main content

Biochemistry, Immunology, and Tissue Response to Prosthetic Material

  • Chapter
Abdominal Wall Hernias

Abstract

The implantation of relatively biocompatible prosthetic materials has gained wide acceptance in the past few decades. Additionally, there has been an increasing number of indications for using prosthetic material in the practice of surgery. The differential healing response of the surrounding tissue adjacent to the prostheses has been recognized but incompletely understood. Typically, there are three stereotypical responses to foreign material, characterized as (1) destruction or lysis; (2) incorporation and tolerance; and (3) rejection or extrusion.1 A truly biocompatible prosthetic material, unlike all known implants to date, would not elicit a foreign body reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ponka JL. Prosthetics in hernia repair. In Hernias of the abdominal wall. Philadelphia: W.B. Saunders; 1980:534–572.

    Google Scholar 

  2. Voorhees AB, Jaretzki A, Blakemore AH. The uses of tubes constructed from Vinyon I cloth in bridging arterial defects. Ann Surg. 1952;35: 332.

    Article  Google Scholar 

  3. Clowes AW, Kirkman TR, Reidy MA. Mechanisms of arterial grafting. Am J Pathol 1986;123:220–230.

    PubMed  CAS  Google Scholar 

  4. Vroman L, Adams AL. Identification of rapid changes at plasma-solid interfaces. J Biomed Mater Res. 1969;3:43–67.

    Article  PubMed  CAS  Google Scholar 

  5. Williams SK, Berman SS, Kleinert LB. Differential healing and neovascularization of ePTFE implants in subcutaneous versus adipose tissue. J Biomed Mater Res. 1997;35:473–481.

    Article  PubMed  CAS  Google Scholar 

  6. Hunt TK, Goodson WH III. In Current surgical diagnosis and treatment, 9th ed. LW Way (Ed.). Norwalk: Appleton and Lange, 1991:95–108.

    Google Scholar 

  7. Andrade JD, Hlady V. Plasma protein adsorption: the big twelve. Ann NY Acad Sci. 1987;516:158–172.

    Article  PubMed  CAS  Google Scholar 

  8. Vroman L. Methods of investigating protein interaction on artificial and natural surfaces. Ann NY Acad Sci. 1987;516:300–305.

    Article  PubMed  CAS  Google Scholar 

  9. Roohk HV, Pick J, Hill R, et al. Kinetics of fibrinogen and platelet adherence to biomaterials. ASIAO Trans. 1976;22:1–7.

    CAS  Google Scholar 

  10. Eberhart RC, Munro MS, Frautschi JR, et al. Influence of endogenous albumin binding on blood-material interactions. Ann NY Acad Sci. 1987;516:78–95.

    Article  PubMed  CAS  Google Scholar 

  11. Ito RK, Rosenblatt MS, Contreras MA, et al. Monitoring platelet interactions with prosthetic graft implants in a canine model. ASAIO Trans. 1990;36:M175–M178.

    PubMed  CAS  Google Scholar 

  12. Lackie JM, DeBono D. Interactions of neutrophil granulocytes and endothelium in vitro. Microvasc Res. 1977;13:107–112.

    Article  PubMed  CAS  Google Scholar 

  13. Greisler HP, Dennis JW, Endean ED, et al. Macrophage/biomaterial interaction: the stimulation of endothelialization. J Vasc Surg. 1989;9: 588–593.

    PubMed  CAS  Google Scholar 

  14. DiCorleto PE, De La Motte CA. Characterization of the adhesion of the human monocyte cell line U-937 to cultured endothelial cells. J Clin Invest. 1985;75:1153–1161.

    Article  PubMed  CAS  Google Scholar 

  15. Bennett NT, Schultz GS. Growth factors and wound healing: biochemical properties of growth factors and their receptors. Am J Surg. 1993;165:728–737.

    Article  PubMed  CAS  Google Scholar 

  16. Heldin C-H, Ronnstrand L. Characterization for the receptor for platelet-derived growth factor on human fibroblasts: demonstration of an intimate relationship with a 185,000-dalton substrate for the platelet-derived growth factor-stimulated kinase. J Biol Chem. 1983; 258:10054–10061.

    PubMed  CAS  Google Scholar 

  17. Baird A, Mormede P, Bohlen P. Immunoreactive fibroblast growth factor on cells of peritoneal exudate suggests its identity with macrophage-derived growth factor. Biochem Biophys Res Commun. 1985;126:358–364.

    Article  PubMed  CAS  Google Scholar 

  18. Greisler HP, Ellinger J, Henderson HC. The effects of an atherogenic diet on macrophage/biomaterial interaction. J Vasc Surg. 1991;14:10.

    Article  PubMed  CAS  Google Scholar 

  19. Assoian RK, Fleurdelys BE, Stevenson HC, et al. Expression and secretion of type  transforming growth factor by activated human macrophages. Proc Natl Acad Sci USA. 1987;84:6020–6024.

    Article  PubMed  CAS  Google Scholar 

  20. Petsikas D, Cziperle DL, Lam TM, et al. Dacron-induced TGF-β release from macrophages: effects on graft healing. Surg Forum. 1991;42: 326–328.

    Google Scholar 

  21. Grant M, Jerden J, Mérimée TJ. Insulin-like growth factor-I modulates endothelial cell Chemotaxis. J Clin Endocrinol Metab. 1987;65:370–371.

    Article  PubMed  CAS  Google Scholar 

  22. Pesonen K, Viinikka L, Myllyla G, et al. Characterization of material with epidermal growth factor immunoreactivity in human serum and platelets. J Clin Endocrinol Metab. 1989;68:486–491.

    Article  PubMed  CAS  Google Scholar 

  23. Brown GL, Curtinger L III, Brightwell JR. Enhancement of epidermal regeneration by biosynthetic epidermal growth factor. J Exp Med. 1986;163:1319–1324.

    Article  PubMed  CAS  Google Scholar 

  24. Wingren U, Franzen L, Larson GM, et al. Epidermal growth factor accelerates connective tissue wound healing in the perforated rat mesentery. J Surg Res. 1992;53:48–54.

    Article  PubMed  CAS  Google Scholar 

  25. Elek SD, Cohen PE. The virulence of staphylococcus pyogenes for man: a study of the problems of wound infection. Br J Exp Path. 1957;38:573–586.

    CAS  Google Scholar 

  26. Murch AR, Grounds AD, Marshall CA, Papadimitriou JM. Direct evidence that inflammatory multinucleate giant cells form by fusion. J Pathol. 1982;137:177–180.

    Article  PubMed  CAS  Google Scholar 

  27. Adler RH. An evaluation of surgical mesh in the repair of hernias and tissue defects. Arch Surg. 1962;85:156–164.

    Article  Google Scholar 

  28. Calne RY. Repair of bilateral hernia with Mersilene® mesh behind rectus abdominis. Arch Surg. 1974;109:532–536.

    Article  PubMed  CAS  Google Scholar 

  29. Collier HS, Griswald RA. Repair of direct inguinal hernia without tension. Am Surg. 1967;33:715–716.

    PubMed  CAS  Google Scholar 

  30. Elliott MP, Juler GL. Comparison of Marlex® and microporous Teflon® sheets when used for hernia repair in the experimental animal. Am J Surg. 1979;137:342–344.

    Article  PubMed  CAS  Google Scholar 

  31. Brown GL, Richardson JD, Malangoni MA, Tobin GR, Ackerman D, Polk HC Jr. Comparison of prosthetic materials for abdominal wall re-construction in the presence of contamination and infection. Ann Surg. 1985;201:705–711.

    Article  PubMed  CAS  Google Scholar 

  32. Law NW, Ellis H. Adhesion formation and peritoneal healing on prosthetic materials. Clin Mater. 1988;3:95–101.

    Article  Google Scholar 

  33. Walker PM, Langer B. Marlex for repair of abdominal wall defects. Can J Surg. 1976;19:211–213.

    PubMed  CAS  Google Scholar 

  34. Hamer-Hodges DW, Scott NB. Replacement of an abdominal wall defect using expanded ePTFE sheet (Gore-Tex®). J R Coll Surg Edinb. 1985;30:65–67.

    PubMed  CAS  Google Scholar 

  35. Bujan J, Contreras LA, Carrera-San Martin A, et al. The behavior of different types of polytetrafluoroethylene prostheses in the reparative scarring process of abdominal wall defects. Histol Histopathol. 1997; 12:683–690.

    PubMed  CAS  Google Scholar 

  36. Cerise EJ, Busuttil RW, Craighead CC, et al. The use of Mersilene® mesh in repair of abdominal wall hernias. Ann Surg. 1975;181:728–734.

    Article  PubMed  CAS  Google Scholar 

  37. Greisler HP, Cabusao EB, Lam TM, et al. Kinetics of collagen deposition within bioresorbable and nonresorbable vascular prostheses. ASAIO Trans. 1991;37:M472–M475.

    PubMed  CAS  Google Scholar 

  38. Cooper ML, Hansbrough JF, Spielvogel RL, et al. In vivo optimization of a living dermal substitute employing cultured human fibroblasts on a biodegradable polyglycolic acid or polyglactin mesh. Biomaterial. 1991;12:243–248.

    Article  CAS  Google Scholar 

  39. Greisler HP. Arterial regeneration over absorbable prostheses. Arch Surg. 1982;117:1425–1431.

    Article  PubMed  CAS  Google Scholar 

  40. Tyrell J, Silberman H, Chandrasoma P, et al. Absorbable versus permanent mesh in abdominal operations. Surg Gynecol Obstet. 1989; 168:227–232.

    PubMed  CAS  Google Scholar 

  41. Lilly GE, Cutcher JL, Jones JC, et al. Reaction of oral tissues to suture material—IV. Oral Surg. 1972;33:152–161.

    Article  PubMed  CAS  Google Scholar 

  42. Edlich RF, Panek PH, Rodeheaver GT, et al. Physical and chemical configuration of sutures in the development of surgical infection. Ann Surg. 1973;177:679–688.

    Article  PubMed  CAS  Google Scholar 

  43. Dayton MT, Buchele VA, Sirazi SS, et al. Use of an absorbable mesh to repair contaminated abdominal wall defects. Arch Surg. 1986;121: 954–960.

    Article  PubMed  CAS  Google Scholar 

  44. Brismar B, Pattersson N. Polyglycolic acid (Dexon®) mesh graft for abdominal wound support in healing-compromised patients. Acta Chir Scand. 1988;154:509–510.

    PubMed  CAS  Google Scholar 

  45. Greisler HP, Tattersall CW, Klosak JJ, et al. Partially bioresorbable vascular grafts in dogs. Surgery. 1991;110:645–655.

    PubMed  CAS  Google Scholar 

  46. Greisler HP, Henderson SC, Lam TM. Basic fibroblast growth factor production in vitro by macrophages exposed to Dacron® and polyglactin 910. J Biomater Sci Polym Ed. 1993;4:415–430.

    PubMed  CAS  Google Scholar 

  47. Greisler HP. Bioresorbable materials and macrophage interaction. J Vasc Surg. 1991;13:748–750.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Woloson, S.K., Greisler, H.P. (2001). Biochemistry, Immunology, and Tissue Response to Prosthetic Material. In: Bendavid, R., Abrahamson, J., Arregui, M.E., Flament, J.B., Phillips, E.H. (eds) Abdominal Wall Hernias. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8574-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8574-3_26

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6440-8

  • Online ISBN: 978-1-4419-8574-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics