Skip to main content

Part of the book series: Applied Mathematical Sciences ((AMS,volume 106))

Abstract

If we want to describe a physical situation where a gas flows past a solid body or is contained in a region bounded by one or more solid bodies, the Boltzmann equation must be accompanied by boundary conditions, which describe the interaction of the gas molecules with the solid walls. It is to this interaction that one can trace the origin of the drag and lift exerted by the gas on the body and the heat transfer between the gas and the solid boundary. Hence, in order to write down the correct boundary conditions for the Boltzmann equation we need information that stems from a discipline that may be regarded as a bridge between the kinetic theory of gases and solid-state physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Bärwinkel and S. Schippers, “Nonreciprocity in noble-gas metal-surface scattering,” in Rarefied Gas Dynamics: Space-Related Studies, E. P. Muntz, D. P. Weaver and D. H. Campbell, eds., 487–501, AIAA, Washington (1989).

    Google Scholar 

  2. R. C. Blanchard, “Rarefied flow lift to drag measurement of the shuttle or biter,” Paper No. ICAS 86–2.10.1, 15th ICAS Congress, London (September 1986).

    Google Scholar 

  3. C. Cercignani, The Boltzmann Equation and Its Applications, Springer, New York (1987).

    Google Scholar 

  4. C. Cercignani, “Kinetic theory with ‘bounce-back’ Boundary Conditions,” Transp. Theory Stat. Phys., 18, 125–131 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. C. Cercignani, Mathematical Methods in Kinetic Theory, Plenum Press, New York (1969).

    Book  MATH  Google Scholar 

  6. C. Cercignani, “Models for gas-surface interactions: Comparison between theory and experiment,” in Rarefied Gas Dynamics, D. Dini et al., eds., vol. I, 75–96, Editrice Tecnico-Scientifica, Pisa (1974).

    Google Scholar 

  7. C. Cercignani “Scattering kernels for gas-surface interaction,” in Proceedings of the Workshop on Hypersonic Flows for Reentry Problems, Vol. I, 9–29, INRIA, Antibes (1990).

    Google Scholar 

  8. C. Cercignani, “Scattering kernels for gas-surface interactions,” Transport Theory and Stat. Phys. 2, 27–53 (1972).

    Article  MathSciNet  ADS  Google Scholar 

  9. C. Cercignani, Theory and Application of the Boltzmann Equation, Scottish Academic Press, Edinburgh and Elsevier, New York (1975).

    MATH  Google Scholar 

  10. C. Cercignani, in Transport Theory, G. Birkhoff et al., eds., SIAM-AMS Proceedings, Vol. I, p. 249, Providence (1968).

    Google Scholar 

  11. C. Cercignani and M. Lampis, “Kinetic models for gas-surface interactions,” Transport Theory and Stat. Phys. 1, 101–114 (1971).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. T. G. Cowling, “On the Cercignani-Lampis formula for gas-surface interactions,” J. Phys. D. Appi. Phys. 7, 781–785 (1974).

    Article  ADS  Google Scholar 

  13. J. S. Darrozès and J. P. Guiraud, “Généralisation formelle du théorème H en présence de parois. Applications,” C. R. A. S. (Paris) A262, 1368–1371 (1966).

    Google Scholar 

  14. F. Hurlbut and F. S. Sherman, “Application of the Nocilla wall reflection model to free-molecule kinetic theory,” Phys. Fluids 11, 486–496 (1968).

    Article  ADS  Google Scholar 

  15. J. L. W. V. Jensen, “Sur les fonctions convexes et les inégalités entre les valeurs moyennes,” Acta Mathematica 30, 175–193 (1906).

    Article  MathSciNet  MATH  Google Scholar 

  16. M. N. Kogan, Rarefied Gas Dynamics, Plenum Press, New York (1969).

    Book  Google Scholar 

  17. M. Knudsen, The Kinetic Theory of Gases, Methuen, London (1950).

    Google Scholar 

  18. A. Kundt and E. Warburg, Pogg. Ann. Phys. 155, 337 (1875).

    Article  ADS  Google Scholar 

  19. I. Kuscer, “Phenomenological aspects of gas-surface interaction,” in Fundamental Problems in Statistical Mechanics IV, E. G. D. Cohen and W. Fiszdon, eds., 441–467, Ossolineum, Warsaw (1978).

    Google Scholar 

  20. I. Kuscer, “Reciprocity in scattering of gas molecules by surfaces,” Surface Science 25, 225 (1971).

    Article  ADS  Google Scholar 

  21. I. Kuscer, in Transport Theory Conference, AEC Report ORO-3588-1, Blacks- burgh, Va. (1969).

    Google Scholar 

  22. Kuscer, J. Mozina, and F. Krizanic, “The Knudsen model of thermal accommodation,” in Rarefied Gas Dynamics, Dini et al., eds., Vol. I, 97–108, Editrice Tecnico-Scientifica, Pisa (1974).

    Google Scholar 

  23. J. C. Maxwell, “On stresses in rarified gases arising from inequalities of temperature,” Phil. Trans. Royal Soc. 170, 231–256, Appendix (1879).

    Google Scholar 

  24. S. Nocilla, “On the interaction between stream and body in free-molecule flow,” in Rarefied Gas Dynamics, L. Talbot, ed., 169, Academic Press, New York (1961)

    Google Scholar 

  25. W. Rudin, Real and Complex Analysis, McGraw-Hill, London (1970).

    Google Scholar 

  26. J. Schnute and M. Shinbrot, “Kinetic theory and boundary conditions for fluids,” Can. J. Math. XXV, 1183–1215 (1973).

    Google Scholar 

  27. S. F. Shen and I. Kuscer, “Symmetry of accommodation coefficients and the parametric representation of gas-surface interaction,” in Rarefied Gas Dynamics, Dini et al., eds. Vol. I, 109–122 (1974).

    Google Scholar 

  28. M. Shinbrot, “Entropy change and the no-slip condition,” Arch. Rational Mech. Anal. 67, 351–363 (1978).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. M. Smoluchowski de Smolan, “On conduction of heat by rarefied gases,” Phil. Mag. 46, 192–206 (1898).

    MATH  Google Scholar 

  30. M. M. R. Williams, “A phenomenological study of gas-surface interactions,” J. Phys. D. Appi. Phys. 4, 1315–1319 (1971).

    Article  ADS  Google Scholar 

  31. M. M. R. Williams, J. Phys. D: Appi Phys. 4, 1315 (1971).

    Article  ADS  Google Scholar 

  32. A. Zygmund, Trigonometrical Series, Dover, New York (1955)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cercignani, C., Illner, R., Pulvirenti, M. (1994). Boundary Conditions. In: The Mathematical Theory of Dilute Gases. Applied Mathematical Sciences, vol 106. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8524-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8524-8_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6425-5

  • Online ISBN: 978-1-4419-8524-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics