Skip to main content

Rigorous Validity of the Boltzmann Equation

  • Chapter
The Mathematical Theory of Dilute Gases

Part of the book series: Applied Mathematical Sciences ((AMS,volume 106))

  • 1207 Accesses

Abstract

In Chapter 2 we gave a formal derivation of the Boltzmann equation from the basic laws of mechanics. In particular, we introduced the Liouville equation, the BBGKY hierarchy, the Boltzmann hierarchy, and the Boltzmann equation, and we discussed the assumptions that allowed us to make the transitions from each of those to the next. The objective of this chapter is to do all these steps rigocrously, wherever possible. In particular, our discussion will lead to a rigorous validity and existence result for the Boltzmann equation, locally for a general situation and globally for a rare gas cloud in vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. K. Alexander, “The infinite hard sphere system,” Ph.D. thesis, Department of Mathematics, University of California at Berkeley (1975).

    Google Scholar 

  2. L. Arkeryd, S. Caprino and N. Ianiro, “The homogeneous Boltzmann hierarchy and statistical solutions to the homogeneous Boltzmann equation,” J. Stat. Phys. 63, 345–361 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  3. L. Boltzmann, “Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen,” Sitzungsberichte der Akademie der Wissenschaften, Wien 66, 275- 370 (1872).

    MATH  Google Scholar 

  4. Broadwell, “Shock structure in a simple discrete velocity gas,” Phys. Fluids 7, 1243–1247 (1964).

    Article  ADS  MATH  Google Scholar 

  5. S. G. Brush (Ed.), Kinetic theory, Pergamon (1966).

    Google Scholar 

  6. S. Caprino, A. DeMasi, E. Presutti, and M. Pulvirenti, “A derivation of the Broadwell equation,” Commun. Math. Phys. 135, 443–465 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. N. Dunford and J. T. Schwarz,Linear Operators, I. Interscience (1963).

    Google Scholar 

  8. R. Esposito and M. Pulvirenti, “Statistical solutions of the Boltzmann equation near the equilibrium,” Transport Theory Stat Phys. 18 (1), 51–71 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. R. Gatignol, “Théorie cinétique des gas à repartition discrète des vitesses,” Lecture Notes in Physics 36, Springer-Verlag (1975).

    Google Scholar 

  10. V. I. Gerasimenko, “On the solution of a Bogoliubov hierarchy for one- dimensional hard sphere particle system,” Teor. Math. Fiz. 91, 120–128 (1992).

    MathSciNet  Google Scholar 

  11. V. I. Gerasimenko and D. Ya. Petrina, “Existence of Boltzmann-Grad limit for an infinite hard sphere system,” Teor. Math. Fiz. 83 , 92–114 (1990).

    MathSciNet  Google Scholar 

  12. R. Illner, “Finiteness of the number of collisions in a hard sphere particle system in all space, II: Arbitrary diameters and masses,” Transport Theory Stat. Phys. 19 (6), 573–579 (1990).

    Google Scholar 

  13. R. Illner, “On the nunmber of collisions in a hard sphere particle system in all space,”Transport Theory Stat. Phys. 18 (1), 71–86 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. R. Illner, “Derivation and validity of the Boltzmann equation: Some remarks on reversibility concepts, the H-functional and coarse-graining,” in Material Instabilities in Continuum Mechanics and Related Mathematical Problems, J. M. Ball (Ed.), Clarendon Press, Oxford 1988.

    Google Scholar 

  15. R. Illner and H. Neunzert, “The concept of irreversibility in the kinetic theory of gases,” Transport Theory Stat. Phys. 16(1), 89–112 (1987).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. R. Illner and T. Platkowski, “Discrete velocity models of the Boltzmann equation: A survey on the mathematical aspects of the theory,” SIAM Review 30 (2), 213–255 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Illner and M. Pulvirenti, “Global validity of the Boltzmann equation for a two- dimensional rare gas in vacuum,” Commun. Math. Phys. 105, 189–203 (1986).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. R. Illner and M. Pulvirenti, “Global validity of the Boltzmann equation for two- and three-dimensional rare gases in vacuum: Erratum and improved result,” Commun. Math. Phys. 121, 143–146 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. O. Lanford III, “Time evolution of large classical systems,” Lecture Notes in Physics 38, E. J. Moser (ed.), 1–111. Springer-Verlag (1975).

    Google Scholar 

  20. C. Marchioro, A. Pellegrinotti, E. Presutti, and M. Pulvirenti, “On the dynamics of particles in a bounded region: A measure theoretical approach,” J. Math. Phys. 17, 647–652 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  21. D. Ya. Petrina, V. I. Gerasimenko, and P. V. Malyshev, Mathematical Foundations of Classical Statistical Mechanics, Gordon and Breach Sci. Publ. (1989).

    MATH  Google Scholar 

  22. H. Spohn, “Fluctuation theory for the Boltzmann equation,” in Nonequilibrium Phenomena I: The Boltzmann Equation. J. L. Lebowitz and E. W. Montroll (Eds.), 225–251, North-Holland (1983).

    Google Scholar 

  23. H. Spohn, Large Scale Dynamics of Interacting Particles, Springer-Verlag (1991).

    Book  MATH  Google Scholar 

  24. K. Uchiyama, “Derivation of the Boltzmann equation from particle dynamics,” Hiroshima Math. J. 18(2), 245–297 (1988).

    MathSciNet  MATH  Google Scholar 

  25. K. Uchiyama, “On the Boltzmann-Grad limit for the Broadwell model of the Boltzmann equation,”J. Stat. Phys. 52 1&2, 331–355 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. L. Vaserstein, “On systems of particles with finite-range and/or repulsive interactions,” Commun. Math. Phys. 69, 31–56 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cercignani, C., Illner, R., Pulvirenti, M. (1994). Rigorous Validity of the Boltzmann Equation. In: The Mathematical Theory of Dilute Gases. Applied Mathematical Sciences, vol 106. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8524-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8524-8_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6425-5

  • Online ISBN: 978-1-4419-8524-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics