Open Problems and New Directions

  • Carlo Cercignani
  • Reinhard Illner
  • Mario Pulvirenti
Part of the Applied Mathematical Sciences book series (AMS, volume 106)


The first eleven chapters of this book comprise a collection of much of what we (the authors) know about the Boltzmann equation for hard spheres. In this last chapter, we want to revisit some of the questions addressed in the earlier chapters and discuss some possible further developments.


Boltzmann Equation Kinetic Theory Shock Layer Collision Operator BBGKY Hierarchy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Arkeryd and C. Cercignani, “A global existence theorem for the initial- boundary value problem for the Boltzmann equation when the boundaries are not isothermal,” Arch. Rat. Mech. Anal. 125, 271288 (1993).MathSciNetCrossRefGoogle Scholar
  2. 2.
    L. Arkeryd, C. Cercignani, and R. Illner, “Measure solutions of the steady Boltzmann equation in a slab,” Commun. Math Phys. 142, 285296 (1991).MathSciNetADSCrossRefMATHGoogle Scholar
  3. 3.
    A. A. Arsen’ev, and O. E. Buryak, “On the solution of the Boltzmann equation and the solution of the Landau-Fokker-Planck equation,” Math. USSR Sbornik 69, 2, 465478 (1991).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    C. Bardos, R. Caflisch, and B. Nicolaenko, Commun. Pure Appl. Math. 22, 208 (1982).Google Scholar
  5. 5.
    T. Beale, “Large-time-behavior of discrete Boltzmann equations,” Commun. Math. Phys. 106, 659678 (1986).MathSciNetADSCrossRefMATHGoogle Scholar
  6. 6.
    S. V. Bogomolov, “Convergence of the total-approximation method for the Boltzmann equation,” U.S.S.R. Comput. Math. Phys. 28 (1), 7984 (1988).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    M. Bony, “Existence globale et diffusion en théorie cinétique discrète,” in Advances in Kinetic Theory and Continuum Mechanics, R. Gatignol and Soubbaramayer eds., 8190, Springer, Berlin (1991).CrossRefGoogle Scholar
  8. 8.
    M. Bony, “Solutions globales bornées pour les modèles discrets de l’équation de Boltzmann en dimension 1 d’espace,” Actes Journées E.D.P. St. Jean de Monts 16 (1987).Google Scholar
  9. 9.
    R. Caflisch and G. Russo, “Implicit methods for collisional kinetic equations,” Proceedings of the 18th Symposium on Rarefied Gas Dynamics, Vancouver, 1992 (to appear).Google Scholar
  10. 10.
    E. A. Carlen and M. C. Carvalho, “Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation,” J. Stat. Phys. 67, 575608 (1992).MathSciNetADSCrossRefMATHGoogle Scholar
  11. 11.
    C. Cercignani, “A remarkable estimate for the solutions of the Boltzmann equation.” Appl. Math. Lett. 5, 5962 (1992).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    C. Cercignani, The Boltzmann Equation and Rs Applications, Springer, New York (1988).CrossRefGoogle Scholar
  13. 13.
    C. Cercignani, “Half-space problems in the kinetic theory of gases,” in Trends in Applications of Pure Mathematics to Mechanics, E. Kroner and K. Kirch- gässner, eds., Lectures Notes in Physics 39, 323 (1986).Google Scholar
  14. 14.
    P. Degond, and B Lucquin-Desreux, “The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case,” Math. Mod. and Meth. Appl. Sci. 2,2, 167182 (1992).MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    J. Glimm, “Solutions in the large for nonlinear hyperbolic systems of equations,” Commun. Pure Appl. Math. 18, 95105 (1965).MathSciNetGoogle Scholar
  16. 16.
    R. Illner and W. Wagner, “A random discrete velocity model and approximation of the Boltzmann equation,” Jour. Stat. Phys. 70 (3/4), 773792 (1993).MathSciNetADSCrossRefMATHGoogle Scholar
  17. 17.
    F. King, Ph. D. thesis, Berkeley 1976Google Scholar
  18. 18.
    O. Lanford III, “Time evolution of large classical systems.” Lecture Notes in Physics 38, Moser, E. J., ed., 1111. Springer-Verlag, New York (1975).Google Scholar
  19. 19.
    P. L. Lions, “Conditions at infinity for Boltzmann’s equation,” Ceremade 9334, 1993.Google Scholar
  20. 20.
    N. Maslova, “Kramers problem in the kinetic theory of gases,” U.S.S.R Comput. Math. Math. Phys. 22, 208219 (1982).MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    B. Nicolaenko, “Shock wave solution of the Boltzmann equation as a nonlinear bifurcation problem for the essential spectrum,” in Théories Cinétiques Classiques et Relativistes, G. Pichon, éd., 127150, CNRS, Paris (1975).Google Scholar
  22. 22.
    H. Spohn, to appear in Micro, Meso and Macroscopic Approaches in Physics, Plenum Press, New York (1994).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Carlo Cercignani
    • 1
  • Reinhard Illner
    • 2
  • Mario Pulvirenti
    • 3
  1. 1.Dip. di MatematicaPolitecnico di MilanoMilanoItaly
  2. 2.Dept. of MathematicsUniversity of VictoriaVictoriaCanada
  3. 3.Dip. di MatematicaUniversity of RomaRomaItaly

Personalised recommendations