Skip to main content

Part of the book series: Applied Mathematical Sciences ((AMS,volume 106))

Abstract

In Chapter 3 Section 8 we discussed the hydrodynamical limit for the Boltzmann equation in general terms and showed how a pure space-time scaling leads to the asymptotic limit ∈ → 0 of solutions of the Boltzmann equations

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Asano, “The fluid dynamical limit of the Boltzmann equation,” in preparation.

    Google Scholar 

  2. C. Bardos, “Une interpretation des relations existant entre les équations de Boltzmann, de Navier-Stokes et d’Euler à l’aide de l’entropie,” Math. Applic. Comp. 6 (1), 97–117 (1987).

    MathSciNet  MATH  Google Scholar 

  3. C. Bardos, F. Golse, and D. Levermore, “Fluid dynamical limits of kinetic equations, I: Formal Derivation,” J. Stat Phys. 63, 323–344 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  4. C. Bardos, F. Golse, and D. Levermore, “Fluid dynamical limits of kinetic equations, II: Convergence proofs,” preprint (1992).

    Google Scholar 

  5. C. Bardos and S. Ukai, “The classical incompressible limit of the Boltzmann equation,” preprint, Tokyo Institute of Technology (1992).

    Google Scholar 

  6. R. Caflisch, “The fluid dynamical limit of the nonlinear Boltzmann equation,” Commun. Pure Appl Math. 33, 651–666 (1980).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. C. Cercignani, The Boltzmann Equation and Its Applications, Springer-Verlag, New York (1988).

    Book  MATH  Google Scholar 

  8. C. Cercignani, Mathematical methods in kinetic theory, Plenum Press, New York, 2nd ed. (1990).

    Book  MATH  Google Scholar 

  9. S. Chapman and T. G. Cowling, The Mathematical Theory of Nonuniform Gases, Cambridge University Press, Cambridge (1952).

    MATH  Google Scholar 

  10. A. De Masi, N. Ianiro, A. Pellegrinotti, and E. Presutti, “A survey of the hydrodynamical behavior of many particle systems,” Studies in Statistical Mechanics 11 (W. Montroll and J. L. Lebowitz, eds.), 123–294, North Holland (1984).

    Google Scholar 

  11. A. De Masi, R. Esposito, and J. L. Lebowitz, “Incompressible Navier-Stokes and Euler limit of the Boltzmann equation,” Commun. Pure Appl. Math. 42, 1189–1214 (1989).

    Article  MATH  Google Scholar 

  12. R. J. DiPerna, “Convergence of approximate solutions to conservation laws,” Arch. Rat. Mech. Anal 82 (1), 27–70 (1983).

    Article  Google Scholar 

  13. D. Hilbert, Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen, Chelsea, New York (1953).

    MATH  Google Scholar 

  14. S. N. Krushkov, “First order quasilinear equations in several variables,” USSR Sb. 10 (2), 217–243 (1970).

    Article  Google Scholar 

  15. M. Lachowicz, “On the initial layer and the existence theorem for the nonlinear Boltzmann equation,” Math. Methods Appl. Sci. 9 (3), 342–366 (1987).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. P. Lions, B. Perthame, and E. Tadmor, “Formulation cinétique des lois de conservation scalaires,” C.R.A.S. Pans 312, I, 97–102 (1991).

    Google Scholar 

  17. A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag, Appl. Math. Ser. 53, (1984).

    Book  MATH  Google Scholar 

  18. T. Nishida, “Fluid dynamical limit of the nonlinear Boltzmann equation at the level of the compressible Euler equations,” Commun. Math. Phys. 61, 119–148 (1978).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. J. Smoller, Shock Waves and Reaction-diffusion Equations, Springer-Verlag (1982).

    Google Scholar 

  20. H. Spohn, Large Scale Dynamics of Interacting Particles, Springer-Verlag, New York (1991).

    Book  MATH  Google Scholar 

  21. S. Ukai and K. Asano, “The Euler limit and initial layer of the nonlinear Boltzmann equation,” Hokkaido Math. J. 12, 303–324 (1983).

    MathSciNet  Google Scholar 

  22. S. R. S. Varadhan, “Entropy methods in hydrodynamic scaling,” in Nonequilibrium Problems in Many-Particle Systems, Lecture Notes in Mathematics 1551, 112–145, Springer-Verlag (1993).

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cercignani, C., Illner, R., Pulvirenti, M. (1994). Hydrodynamical Limits. In: The Mathematical Theory of Dilute Gases. Applied Mathematical Sciences, vol 106. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8524-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8524-8_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6425-5

  • Online ISBN: 978-1-4419-8524-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics