Highly Linear and Efficient Watt-Level SDR Transmitter with Power Mixer Array

Chapter

Abstract

The software-defined radio (SDR) requires a universal transmitter, and especially, highly efficient linear power amplifier (PA). However, conventional IQ transmitters, which require many analog and RF circuits, offer little flexibility and widely used class-AB amplifiers have low efficiency. In this chapter, power mixer array is demonstrated as a high-power SDR transmitter implementation. It is based on highly efficient switching power amplifiers, and high linearity is enabled by segmentation technique.

Keywords

Aliasing 

Notes

Acknowledgements

The authors would like to thank the member of CHIC group at Caltech, particularly Professor A. Hajimiri for many suggestions and helpful discussions, and Toshiba Corp. for supports.

References

  1. 1.
    P. Cruise, C.-M. Hung, R. Staszewski, O. Eliezer, S. Rezeq, K. Maggio and D. Leipold, “A digital-to-RF amplitude converter for GSM/GPRS/EDGE in 90-nm digital CMOS”, in Proc. IEEE RFIC Symp., Oct. 2005, pp. 21–24.Google Scholar
  2. 2.
    A. Kavousian, D. Su, and B Wooley, “A Digitally Modulated Polar CMOS Power Amplifier with 20 MHz Signal BW”, IEEE J. Solid-State Circuit, vol. 43, no. 10, pp. 2251–2258, Oct. 2008.CrossRefGoogle Scholar
  3. 3.
    C. D. Presti, F. Carrara, and G. P. A. Scuderi, “A High-Resolution 24-dBm Digitally-Controlled CMOS PA for Multi-Standard RF Polar Transmitters”, in Proc. 34th ESSCIRC Conf., 2008. pp. 482–485.Google Scholar
  4. 4.
    S. Hietakangas, T. Rautio, T. Rahkonen, “Feedthrough cancellation in a class E amplified polar transmitter”, in Proc. of European Conference on Circuit Theory and Design, 2007, pp. 591–594.Google Scholar
  5. 5.
    J. D. Kitchen, I. Deligoz, S. Kiaei and B. Bakkaloglu, “Linear RF Polar Modulated SiGe Class E and F Power Amplifiers”, in Proc. IEEE RFIC Symp., 2006, pp. 4–7.Google Scholar
  6. 6.
    S. Kousai and A. Hajimiri, “An Octave-Range, Watt-Level, Fully-Integrated CMOS Switching Power Mixer Array for Linearization and Back-Off-Efficiency Improvement”, IEEE Journal of Solid-State Circuits, pp. 3392–3376, VOL. 44, NO. 12, DECEMBER 2009.Google Scholar
  7. 7.
    S. Kang, B. Choi, and B. Kim, “Linearity Analysis of CMOS for RF Application”, IEEE J. Solid-State Circuit, vol. 51, no. 3, pp. 972–977, March 2003.Google Scholar
  8. 8.
    A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, _Low-power cmos digital design,_ IEEE Journal of Solid-State Circuits, vol. 27, no. 4, pp. 473–484, April 1992.Google Scholar
  9. 9.
    H. J. M. Veendrick, “Short-circuit dissipation of static CMOS circuitry and its impact on the design of buffer circuits,” IEEE J. Solid-State Circuits, vol. 19, no. 4, pp. 468–473, Aug. 1984.CrossRefGoogle Scholar
  10. 10.
    I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Fully-integrated CMOS power amplifier design using the distributed active transformer architecture,” IEEE J. Solid-State Circuit, vol. 37, no. 3, pp. 371–83, March 2002.CrossRefGoogle Scholar
  11. 11.
    D. Chowdhury, C. D. Hull, O. B. Degani, P. Goyal, Y. Wang and A. M. Niknejad, “A Single-Chip Highly Linear 2.4GHz 30dBm Power Amplifier in 90nm CMOS”, in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2009, pp. 378–379.Google Scholar
  12. 12.
    N. Wongkomet, L. Tee, and P. R. Gray, “A + 31. 5 dBm CMOS RF Doherty Power Amplifier for Wireless Communications”, IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2852–2559, Dec. 2006.CrossRefGoogle Scholar
  13. 13.
    A. Afsahi1, A. Behzad, L. Larson, “A 65nm CMOS 2.4GHz 31.5dBm Power Amplifier with a Distributed LC Power-Combining Network and Improved Linearization for WLAN Applications”, IEEE International Solid-State Circuits Conference, pp. 452–453, Feb. 2010.Google Scholar
  14. 14.
    O. Lee, K. Yang, K. An, Y. Kim, H. Kim, J. Chang, W. Woo, C. Lee, and J. Laskar, “A 1.8-GHz 2-Watt Fully Integrated CMOS Push-Pull Parallel-Combined Power Amplifier Design”, IEEE Radio Frequency Integrated Circuits Symposium, pp. 435–438, Oct. 2007.Google Scholar
  15. 15.
    R. Brama, L. Larcher, A. Mazzanti, and F. Svelto, “A 30.5 dBm 48% PAE CMOS Class-E PA With Integrated Balun for RF Applications”, IEEE J. Solid-State Circuit, vol. 43, no. 6, pp. 1755–1762, June 2008.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Toshiba CorporationTokyoJapan

Personalised recommendations