The title of this chapter calls for some explanation. This chapter largely discusses functions and functionalities of Mathematica that are either unrelated or only indirectly related to mathematics and together with the former, the Mathematica purpose-defining tagline Mathematica-A System for Doing Mathematics by Computer this explains the title. This chapter does not deal with any “meta-mathematical” (in the sense of Godel-Turing-Chaitin [3], [4], [5], [12], [11], [6], [13]) issues.


Current Context Context Global Function Definition Error Message Warning Message 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Ackermann. Math. Ann. 99, 118 (1928).CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    C. Calude, S. Marcus, I. Tevy. Historia Math. 6, 380 (1974).CrossRefMathSciNetGoogle Scholar
  3. 3.
    G. J. Chaitin. The Unknowable Springer-Verlag, New York, 1998.Google Scholar
  4. 4.
    G. J. Chaitin. The Limits of Mathematics Springer-Verlag, New York, 1999.Google Scholar
  5. 5.
    G. J. Chaitin. arXiv:chao-dyn/99090l 1 (1999).Google Scholar
  6. 6.
    D. Deutsch, A. Ekert, R. Lupacchini. Bull. Symb. Logic 6, 265 (2000).CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    J. Dieudonne. Geschichte der Mathematik Verlag der Wissenschaften, Berlin, 1985.MATHGoogle Scholar
  8. 8.
    E. Fredkin in Workshop on Physics and Computation PhysComp ‘82 IEEE Computer Society Press, Los Alamitos, 1993.Google Scholar
  9. 9.
    R. P. Grimaldi. Discrete and Combinatorical Mathematics Addison-Wesley, Reading, 1994.Google Scholar
  10. 10.
    J. W. Grossman, R.S. Zeitman. Theor. Comput. Sci. 57, 327 (1988).CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    N. D. Jones. Computability and Complexity from a Programming Perspective MIT Press, 1997.Google Scholar
  12. 12.
    N. D. Jones in S. B. Cooper, J. K. Truss (eds.). Models and Computability Cambridge University Press, Cambridge, 1999.Google Scholar
  13. 13.
    T. D. Kieu. arXiv: quant-ph/0205093 (2002).Google Scholar
  14. 14.
    R. Maeder. Programming in Mathematica Addison-Wesley, Reading, 1991.Google Scholar
  15. 15.
    K. K. Nambiar. Appl. Math. Lett. 8, 51 (1995).CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    A. Oberschelp. Rekursionstheorie BI, Mannheim, 1993.MATHGoogle Scholar
  17. 17.
    R. Peter. Math. Ann. 111, 42 (1935).CrossRefMathSciNetGoogle Scholar
  18. 18.
    R. Peter. Rekursive Funktionen Budapest, 1951.Google Scholar
  19. 19.
    R. M. Robinson. Bull. Am. Math. Soc. 54, 987 (1948).CrossRefMATHGoogle Scholar
  20. 20.
    H. E. Rose. Subrecursion, Functions and Hierarchies Clarendon Press, Oxford, 1984.MATHGoogle Scholar
  21. 21.
    M. Sharir, P. K. Agarwal. Davenport-Schinzel Sequences and their Geometric Applications Cambridge University Press, Cambridge, 1995.MATHGoogle Scholar
  22. 22.
    C. Smorynski. Logical Number Theory I Springer-Verlag, Berlin, 1991.CrossRefMATHGoogle Scholar
  23. 23.
    Y. Sundblad. BIT 11, 107 (1971).CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Z. Toroczkai. arXiv:cond-mat/0108448 (2001).Google Scholar
  25. 25.
    M. Trott. The Mathematica GuideBook for Graphics Springer-Verlag, New York, 2004.CrossRefMATHGoogle Scholar
  26. 26.
    M. Trott. The Mathematica GuideBook for Numerics Springer-Verlag, New York, 2004.Google Scholar
  27. 27.
    M. Trott. The Mathematica GuideBook for Symbolics Springer-Verlag, New York, 2004.Google Scholar
  28. 28.
    D. Withoff. Mathematica Internals. Proceedings Mathematica Conference, Boston, 1992 (MathSource 0203–982).Google Scholar
  29. 29.
    S. Wolfram. The Mathematica Book Cambridge University Press and Wolfram Media, Cambridge, 1999.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Michael Trott
    • 1
  1. 1.Wolfram ResearchChampaignUSA

Personalised recommendations