Skip to main content

Part of the book series: Applied Mathematical Sciences ((AMS,volume 120))

  • 5836 Accesses

Abstract

We consider acoustic waves that travel in a medium such as a fluid. Let v(x, t) be the velocity vector of a particle at \(x \in {\mathbb{R}}^{3}\) and time t. Let p(x, t), ρ(x, t), and S(x, t) denote the pressure, density, and specific entropy, respectively, of the fluid. We assume that no exterior forces act on the fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One has to modify the proof in [49] where n ∈ C(Ω) is assumed.

  2. 2.

    As proper assumptions on v, w one requires v, w ∈ L 2(D) and v − w ∈ H 2(D). The differential equations are understood in the “ultra weak sense”; see [143].

  3. 3.

    Actually, it was a scattering problem for which the Factorization Method was first discovered ([141]) before it was applied to the problem of electrical impedance tomography in [22, 23].

References

  1. R.A. Adams and J. Fournier. Sobolev Spaces. Academic Press, 2nd, repr. edition, 2005.

    Google Scholar 

  2. M. Brühl. Gebietserkennung in der elektrischen Impedanztomographie. PhD thesis, Universität Karlsruhe, Karlsruhe, Germany, 1999.

    Google Scholar 

  3. M. Brühl. Explicit characterization of inclusions in electrical impedance tomography. SIAM J. Math. Anal., 32:1327–1341, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. L. Bukhgeim. Recovering a potential from Cauchy data in the two-dimenional case. J. Inverse Ill-Posed Probl., 15:1–15, 2007.

    Article  MathSciNet  Google Scholar 

  5. F. Cakoni, D. Colton, and H. Haddar. The interior transmission problem for regions with cavity. SIAM J. Math. Anal., 42:145–162, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Cakoni and D. Gintides. New results on transmission eigenvalues. Inverse Probl. Imaging, 4:39–48, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Cakoni, D. Gintides, and H. Haddar. The existence of an infinite discrete set of transmission eigenvalues. SIAM J. of Math. Anal., 42:237–255, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Colton and A. Kirsch. A simple method for solving inverse scattering problems in the resonance region. Inverse Problems, 12:383–393, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Colton, A. Kirsch, and L. Päivärinta. Far field patterns for acoustic waves in an inhomogeneous medium. SIAM J. Math. Anal., 20:1472–1483, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Colton and R. Kress. Integral Equation Methods in Scattering Theory. Wiley-Interscience, New York, 1983.

    MATH  Google Scholar 

  11. D. Colton and R. Kress. Eigenvalues of the far field operator and inverse scattering theory. SIAM J. Math. Anal., 26:601–615, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Colton and R. Kress. Inverse Acoustic and Electromagnetic Scattering Theory. Springer, New York, 2nd edition, 1998.

    MATH  Google Scholar 

  13. D. Colton and P. Monk. A novel method for solving the inverse scattering problem for time–harmonic acoustic waves in the resonance region. SIAM J. Appl. Math., 45:1039–1053, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Colton and P. Monk. A novel method for solving the inverse scattering problem for time–harmonic acoustic waves in the resonance region II. SIAM J. Appl. Math., 46:506–523, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Colton and P. Monk. The inverse scattering problem for time-harmonic acoustic waves in a penetrable medium. Quart. J. Mech. Appl. Math., 40:189–212, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Colton and P. Monk. The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium. Quart. J. Mech. Appl. Math., 41:97–125, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Colton and P. Monk. A new method for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium. Inverse Problems, 5:1013–1026, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Colton, L. Päivärinta, and J. Sylvester. The interior transmission problem. Inverse Probl. Imaging, 1:13–28, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Gilbarg and N.S. Trudinger. Elliptic Partial Differential Equations of Second Order. Springer, New York, 2nd, rev. 3. print. edition, 1998.

    Google Scholar 

  20. S. Gutman and M. Klibanov. Regularized quasi-Newton method for inverse scattering problems. Math. Comput. Model., 18:5–31, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Gutman and M. Klibanov. Iterative method for multi-dimensional inverse scattering problems at fixed frequencies. Inverse Problems, 10:573–599, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Hähner. A periodic Faddeev-type solution operator. J. Diff. Equ., 128:300–308, 1996.

    Article  MATH  Google Scholar 

  23. M. Hitrik, K. Krupchyk, P. Ola, and L. Päivärinta. Transmission eigenvalues for operators with constant coefficients. Personal Communication, 2010.

    Google Scholar 

  24. A. Kirsch. The denseness of the far field patterns for the transmission problem. IMA J. Appl. Math., 37:213–225, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Kirsch. Characterization of the shape of a scattering obstacle using the spectral data of the far field operator. Inverse Problems, 14:1489–1512, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Kirsch. On the existence of transmission eigenvalues. Inverse Probl. Imaging, 3:155–172, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Kirsch and N. Grinberg. The Factorization Method for Inverse Problems. Oxford University Press, Oxford, UK.

    Google Scholar 

  28. R.E. Kleinman and P.M. van den Berg. A modified gradient method for two-dimensional problems in tomography. J. Comput. Appl. Math., 42:17–36, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  29. W. McLean. Strongly Elliptic Systems and Boundary Integral Operators. Cambridge University Press, Cambridge, UK, 2000.

    Google Scholar 

  30. A.I. Nachman. Reconstructions from boundary measurements. Ann. Math., 128:531–576, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  31. R.G. Novikov. Multidimensional inverse spectral problems. Funct. Anal. Appl., 22:263–272, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  32. L. Päivärinta and J. Sylvester. Transmission eigenvalues. SIAM J. Math. Anal., 40:738–753, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  33. A.G. Ramm. Recovery of the potential from fixed energy scattering data. Inverse Problems, 4:877–886, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  34. F. Rellich. Über das asymptotische Verhalten von Lösungen von \(\Delta u + \lambda u = 0\) in unendlichen Gebieten. Jber. Deutsch. Math. Verein., 53:57–65, 1943.

    MathSciNet  MATH  Google Scholar 

  35. J.R. Ringrose. Compact Non-Self-Adjoint Operators. Van Nostrand Reinhold, London, 1971.

    MATH  Google Scholar 

  36. J. Sylvester and G. Uhlmann. A global uniqueness theorem for an inverse boundary value problem. Ann. Math., 125:69–153, 1987.

    Article  MathSciNet  Google Scholar 

  37. P.M. van den Berg, M.G. Coté, and R.E. Kleinman. “Blind” shape reconstruction from experimental data. IEEE Trans. Ant. Prop., 43:1389–1396, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Kirsch .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kirsch, A. (2011). An Inverse Scattering Problem. In: An Introduction to the Mathematical Theory of Inverse Problems. Applied Mathematical Sciences, vol 120. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8474-6_6

Download citation

Publish with us

Policies and ethics