Skip to main content

Part of the book series: Applied Mathematical Sciences ((AMS,volume 120))

  • 5850 Accesses

Abstract

Inverse eigenvalue problems are not only interesting in their own right but also have important practical applications. We recall the fundamental paper by Kac [132]. Other applications appear in parameter identification problems for parabolic or hyperbolic differential equations (see [149, 170, 234]) or in grating theory ([140]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.A. Adams and J. Fournier. Sobolev Spaces. Academic Press, 2nd, repr. edition, 2005.

    Google Scholar 

  2. L.V. Ahlfors. Complex Analysis. McGraw Hill, New York, 1966.

    MATH  Google Scholar 

  3. L.E. Andersson. Algorithms for solving inverse eigenvalue problems for Sturm-Liouville equations. In P.S. Sabatier, editor, Inverse Methods in Action. Springer, New York, 1990.

    Google Scholar 

  4. G. Anger. Inverse and Improperly Posed Problems in Partial Differential Equations. Springer, New York, 1979.

    Google Scholar 

  5. V. Barcilon. Iterative solution of the inverse Sturm-Liouville problem. J. Math. Phys., 15:429–436, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Brakhage. On ill-posed problems and the method of conjugate gradients. In H.W. Engl and C.W. Groetsch, editors, Inverse and Ill-Posed Problems. Academic Press, New York, 1987.

    Google Scholar 

  7. I.M. Gel’fand and B.M. Levitan. On the determination of a differential operator from its spectral function. Am. Math. Soc. Trans., 1:253–304, 1951.

    MathSciNet  Google Scholar 

  8. S. Gutman and M. Klibanov. Regularized quasi-Newton method for inverse scattering problems. Math. Comput. Model., 18:5–31, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Kac. Can one hear the shape of the drum? Am. Math. Month., 73:1–23, 1966.

    Article  MATH  Google Scholar 

  10. A. Kirsch. An inverse scattering problem for periodic structures. In E. Martensen R.E. Kleinman, R. Kress, editor, Methoden und Verfahren der mathematischen Physik, pages 75–93, Frankfurt, 1995. Peter Lang.

    Google Scholar 

  11. C. Kravaris and J.H. Seinfeld. Identifiabilty of spatially-varying conductivity from point obervation as an inverse Sturm–Liouville problem. SIAM J. Control Optim., 24:522–542, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  12. O.A. Ladyzenskaja, V.A. Solonnikov, and N.N. Uralceva. Linear and Quasi-Linear Equations of Parabolic Type. American Mathematical Society, Providence, 1986.

    Google Scholar 

  13. B.D. Lowe, M. Pilant, and W. Rundell. The recovery of potentials from finite spectral data. SIAM J. Math. Anal., 23:482–504, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  14. B.D. Lowe and W. Rundell. The determination of a coefficient in a parabolic equation from input sources. IMA J. Appl. Math., 52:31–50, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Pöschel and E. Trubowitz. Inverse Spectral Theory. Academic Press, London, 1987.

    MATH  Google Scholar 

  16. W. Rundell. Inverse Sturm–Liouville problems. Technical report, University of Oulu, Oulu, 1996.

    Google Scholar 

  17. W. Rundell and P.E. Sacks. The reconstruction of Sturm–Liouville operators. Inverse Problems, 8:457–482, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  18. W. Rundell and P.E. Sacks. Reconstruction techniques for classical Sturm–Liouville problems. Math. Comput., 58:161–183, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Suzuki and R. Muayama. A uniqueness theorem in an identification problem for coefficients of parabolic equations. Proc. Jpn. Acad. Ser. A, 56:259–263, 1980.

    Article  MATH  Google Scholar 

  20. T. Yosida. Lectures on Differential and Integral Equations. Wiley Interscience, New York, 1960.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Kirsch .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kirsch, A. (2011). Inverse Eigenvalue Problems. In: An Introduction to the Mathematical Theory of Inverse Problems. Applied Mathematical Sciences, vol 120. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8474-6_4

Download citation

Publish with us

Policies and ethics