Regularization by Discretization

Part of the Applied Mathematical Sciences book series (AMS, volume 120)


In this chapter, we study a different approach to regularizing operator equations of the form Kx = y, where x and y are elements of certain function spaces. This approach is motivated by the fact that for the numerical treatment of such equations one has to discretize the continuous problem and reduce it to a finite system of (linear or nonlinear) equations. We see in this chapter that the discretization schemes themselves are regularization strategies in the sense of Chap. 2.


Galerkin Method Projection Method Collocation Method Conjugate Gradient Method Reproduce Kernel Hilbert Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R.A. Adams and J. Fournier. Sobolev Spaces. Academic Press, 2nd, repr. edition, 2005.Google Scholar
  2. 8.
    D.N. Arnold and W.L. Wendland. On the asymptotic convergence of collocation methods. Math. Comput., 41:349–381, 1983.MathSciNetMATHCrossRefGoogle Scholar
  3. 9.
    D.N. Arnold and W.L. Wendland. The convergence of spline collocation for strongly elliptic equations on curves. Numer. Math., 47:310–341, 1985.MathSciNetCrossRefGoogle Scholar
  4. 11.
    K.E. Atkinson. A discrete Galerkin method for first kind integral equations. J. Integ. Equat. Appl., 1:343–363, 1988.MATHCrossRefGoogle Scholar
  5. 12.
    K.E. Atkinson and I.H. Sloan. The numerical solution of first-kind logarithmic-kernel integral equations on smooth open arcs. Math. Comput., 56:119–139, 1991.MathSciNetMATHCrossRefGoogle Scholar
  6. 13.
    G. Backus and F. Gilbert. The resolving power of gross earth data. Geophys. J. R. Astron. Soc, 16:169–205, 1968.MATHCrossRefGoogle Scholar
  7. 14.
    G. Backus and F. Gilbert. Uniqueness in the inversion of inaccurate gross earth data. Philos. Trans. R. Soc. London, 266:123–197, 1970.MathSciNetCrossRefGoogle Scholar
  8. 17.
    J. Baumeister. Stable Solutions of Inverse Problems. Vieweg, Braunschweig, 1987.CrossRefGoogle Scholar
  9. 21.
    G. Bruckner. On the regularization of the ill-posed logarithmic kernel integral equation of the first kind. Inverse Problems, 11:65–78, 1995.MathSciNetMATHCrossRefGoogle Scholar
  10. 31.
    B. Caccin, C. Roberti, P. Russo, and L.A. Smaldone. The Backus-Gilbert inversion method and the processing of sampled data. IEEE Trans. Signal Process., 40:2823–2825, 1992.CrossRefGoogle Scholar
  11. 47.
    D. Colton and R. Kress. Integral Equation Methods in Scattering Theory. Wiley-Interscience, New York, 1983.MATHGoogle Scholar
  12. 56.
    M. Costabel. Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal., 19:613–626, 1988.MathSciNetMATHCrossRefGoogle Scholar
  13. 57.
    M. Costabel, V.J. Ervin, and E.P. Stephan. On the convergence of collocation methods for Symm’s integral equation on smooth open arcs. Math. Comput., 51:167–179, 1988.MathSciNetMATHGoogle Scholar
  14. 58.
    M. Costabel and E.P. Stephan. On the convergence of collocation methods for boundary integral equations on polygons. Math. Comput., 49:461–478, 1987.MathSciNetMATHCrossRefGoogle Scholar
  15. 59.
    M. Costabel and W. Wendland. Strong ellipticity of boundary integral operators. J. Reine Angew. Math., 372:39–63, 1986.MathSciNetGoogle Scholar
  16. 69.
    L. Eldén. Algorithms for the regularization of ill-conditioned least squares problems. BIT, 17:134–145, 1977.MATHCrossRefGoogle Scholar
  17. 72.
    L. Eldén. An algorithm for the regularization of ill-conditioned banded least squares problems. SIAM J. Sci. Stat. Comput., 5:237–254, 1984.MATHCrossRefGoogle Scholar
  18. 73.
    J. Elschner. On spline approximation for a class of integral equations. I: Galerkin and collocation methods with piecewise polynomials. Math. Meth. Appl. Sci., 10:543–559, 1988.Google Scholar
  19. 75.
    H. Engl. On least-squares collocation for solving linear integral equations of the first kind with noisy right-hand-side. Boll. Geodesia Sc. Aff., 41:291–313, 1982.Google Scholar
  20. 80.
    H. Engl and W. Grever. Using the L-curve for determining optimal regularization parameters. Numer. Math., 69:25–31, 1994.MathSciNetMATHCrossRefGoogle Scholar
  21. 88.
    B.G. Galerkin. Expansions in stability problems for elastic rods and plates. Vestnik Inzkenorov, 19:897–908, 1915. in Russian.Google Scholar
  22. 95.
    G.H. Golub and C. Reinsch. Singular value decomposition and least squares solutions. Numer. Math., 14:403–420, 1970.MathSciNetMATHCrossRefGoogle Scholar
  23. 102.
    H. Haario and E. Somersalo. The Backus–Gilbert method revisited: Background, implementation and examples. Numer. Funct. Anal. Optim., 9:917–943, 1985.MathSciNetCrossRefGoogle Scholar
  24. 116.
    G. Hellwig. Partielle Differentialgleichungen. Teubner Verlag, Stuttgart, 1960.MATHGoogle Scholar
  25. 124.
    G.C. Hsiao, P. Kopp, and W.L. Wendland. A Galerkin collocation method for some integral equations of the first kind. Computing, 25:89–113, 1980.MathSciNetMATHCrossRefGoogle Scholar
  26. 125.
    G.C. Hsiao and R.C. MacCamy. Solution of boundary value problems by integral equations of the first kind. SIAM Review, 15:687–705, 1973.MathSciNetMATHCrossRefGoogle Scholar
  27. 126.
    G.C. Hsiao and W.L. Wendland. A finite element method for some integral equations of the first kind. J. Math. Anal. Appl., 58:449–481, 1977.MathSciNetMATHCrossRefGoogle Scholar
  28. 127.
    G.C. Hsiao and W.L. Wendland. The Aubin–Nitsche lemma for integral equations. J. Integ. Eq., 3:299–315, 1981.MathSciNetMATHGoogle Scholar
  29. 128.
    S.P. Huestis. The Backus–Gilbert problem for sampled band-limited functions. Inverse Problems, 8:873–887, 1992.MathSciNetMATHCrossRefGoogle Scholar
  30. 131.
    S. Joe and Y. Yan. A piecewise constant collocation method using cosine mesh grading for Symm’s equation. Numer. Math., 65:423–433, 1993.MathSciNetMATHCrossRefGoogle Scholar
  31. 134.
    W.J. Kammerer and M.Z. Nashed. Iterative methods for best approximate solutions of integral equations of the first and second kinds. J. Math. Anal. Appl., 40:547–573, 1972.MathSciNetMATHCrossRefGoogle Scholar
  32. 144.
    A. Kirsch, B. Schomburg, and G. Berendt. The Backus–Gilbert method. Inverse Problems, 4:771–783, 1988.MathSciNetMATHCrossRefGoogle Scholar
  33. 145.
    A. Kirsch, B. Schomburg, and G. Berendt. Mathematical aspects of the Backus–Gilbert method. In B. Kummer, A. Vogel, R. Gorenflo, and C.O. Ofoegbu, editors, Inverse Modeling in Exploration Geophysics, Braunschweig, Wiesbaden, 1989. Vieweg–Verlag.Google Scholar
  34. 150.
    R. Kress, 1994. personal communication.Google Scholar
  35. 151.
    R. Kress. Linear Integral Equations. Springer, New York, 2nd edition, 1999.MATHCrossRefGoogle Scholar
  36. 152.
    R. Kress and I.H. Sloan. On the numerical solution of a logarithmic integral equation of the first kind for the Helmholtz equation. Numer. Math., 66:199–214, 1993.MathSciNetMATHCrossRefGoogle Scholar
  37. 165.
    A.K. Louis. Inverse und schlecht gestellte Probleme. Teubner–Verlag, Stuttgart, 1989.Google Scholar
  38. 167.
    A.K. Louis and P. Maass. Smoothed projection methods for the moment problem. Numer. Math., 59:277–294, 1991.MathSciNetMATHCrossRefGoogle Scholar
  39. 171.
    J.T. Marti. An algorithm for computing minimum norm solutions of Fredholm integral equations of the first kind. SIAM J. Numer. Anal., 15:1071–1076, 1978.MathSciNetMATHCrossRefGoogle Scholar
  40. 172.
    J.T. Marti. On the convergence of an algorithm computing minimum-norm solutions to ill-posed problems. Math. Comput., 34:521–527, 1980.MathSciNetMATHCrossRefGoogle Scholar
  41. 183.
    M.Z. Nashed. On moment discretization and least-squares solution of linear integral equations of the first kind. J. Math. Anal. Appl., 53:359–366, 1976.MathSciNetMATHCrossRefGoogle Scholar
  42. 184.
    M.Z. Nashed and G. Wahba. Convergence rates of approximate least squares solution of linear integral and operator equations of the first kind. Math. Comput., 28:69–80, 1974.MathSciNetMATHCrossRefGoogle Scholar
  43. 185.
    I.P. Natanson. Constructive Function Theory. Frederick Ungar, New York, 1965.Google Scholar
  44. 186.
    F. Natterer. Regularisierung schlecht gestellter Probleme durch Projektionsverfahren. Numer. Math., 28:329–341, 1977.MathSciNetMATHCrossRefGoogle Scholar
  45. 198.
    G.I. Petrov. Application of Galerkin’s method to a problem of the stability of the flow of a viscous fluid. Priklad. Matem. Mekh., 4:3–12, 1940. (In Russian).Google Scholar
  46. 202.
    Lord Rayleigh. On the dynamical theory of gratings. Proc. R. Soc. Lon. A, 79:399–416, 1907.Google Scholar
  47. 204.
    G.R. Richter. Numerical solution of integral equations of the first kind with nonsmooth kernels. SIAM J. Numer. Anal., 15:511–522, 1978.MathSciNetMATHCrossRefGoogle Scholar
  48. 208.
    W. Ritz. Über lineare Funktionalgleichungen. Acta Math., 41:71–98, 1918.Google Scholar
  49. 209.
    G. Rodriguez and S. Seatzu. Numerical solution of the finite moment problem in a reproducing kernel Hilbert space. J. Comput. Appl. Math., 33:233–244, 1990.MathSciNetMATHCrossRefGoogle Scholar
  50. 218.
    J. Saranen. The modified quadrature method for logarithmic-kernel integral equations on closed curves. J. Integ. Eq. Appl., 3:575–600, 1991.MathSciNetMATHCrossRefGoogle Scholar
  51. 219.
    J. Saranen and I.H. Sloan. Quadrature methods for logarithmic-kernel integral equations on closed curves. IMA J. Numer. Anal., 12:167–187, 1992.MathSciNetMATHCrossRefGoogle Scholar
  52. 220.
    J. Saranen and W.L. Wendland. On the asymptotic convergence of collocation methods with spline functions of even degree. Math. Comput., 45:91–108, 1985.MathSciNetMATHCrossRefGoogle Scholar
  53. 221.
    G. Schmidt. On spline collocation methods for boundary integral equations in the plane. Math. Meth. Appl. Sci., 7:74–89, 1985.MATHCrossRefGoogle Scholar
  54. 223.
    E. Schock. What are the proper condition numbers of discretized ill-posed problems? Lin. Alg. Appl., 81:129–136, 1986.MathSciNetMATHCrossRefGoogle Scholar
  55. 224.
    B. Schomburg and G. Berendt. On the convergence of the Backus–Gilbert algorithm. Inverse Problems, 3:341–346, 1987.MathSciNetMATHCrossRefGoogle Scholar
  56. 225.
    T.I. Seidman. Nonconvergence results for the application of least squares estimation to ill-posed problems. J. Optim. Theory Appl., 30:535–547, 1980.MathSciNetMATHCrossRefGoogle Scholar
  57. 228.
    I.H. Sloan. Error analysis of boundary integral methods. Acta Numer., 1:287–339, 1992.MathSciNetCrossRefGoogle Scholar
  58. 229.
    I.H. Sloan and B.J. Burn. An unconventional quadrature method for logarithmic-kernel integral equations on closed curves. J. Integ. Eq. Appl., 4:117–151, 1992.MathSciNetMATHCrossRefGoogle Scholar
  59. 230.
    I.H. Sloan and W.L. Wendland. A quadrature-based approach to improving the collocation method for splines of even degree. Z. Anal. Anw., 8:362–376, 1989.MathSciNetGoogle Scholar
  60. 244.
    W. Wendland. On Galerkin collocation methods for integral equations of elliptic boundary value problems. In R. Leis, editor, Numerical Treatment of Integral Equations, volume ISNM 53, pages 244–275, Basel, 1979. Birkhäuser–Verlag.Google Scholar
  61. 245.
    J. Werner. Optimization Theory and Applications. Vieweg–Verlag, Braunschweig, Wiesbaden, 1984.Google Scholar
  62. 248.
    X.G. Xia and M.Z. Nashed. The Backus–Gilbert method for signals in reproducing kernel Hilbert spaces and wavelet subspaces. Inverse Problems, 10:785–804, 1994.MathSciNetMATHCrossRefGoogle Scholar
  63. 249.
    X.G. Xia and Z. Zhang. A note on ‘the Backus–Gilbert inversion method and the processing of sampled data’. IEEE Trans. Signal Process., 43:776–778, 1995.CrossRefGoogle Scholar
  64. 250.
    Y. Yan and I.H. Sloan. On integral equations of the first kind with logarithmic kernels. J. Integ. Eq. Appl., 1:549–579, 1988.MathSciNetMATHCrossRefGoogle Scholar
  65. 251.
    Y. Yan and I.H. Sloan. Mesh grading for integral equations of the first kind with logarithmic kernel. SIAM J. Numer. Anal., 26:574–587, 1989.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations