Skip to main content

Community Discovery in Social Networks: Applications, Methods and Emerging Trends

  • Chapter
  • First Online:

Abstract

Data sets originating from many different real world domains can be represented in the form of interaction networks in a very natural, concise and meaningful fashion. This is particularly true in the social context, especially given recent advances in Internet technologies and Web 2.0 applications leading to a diverse range of evolving social networks. Analysis of such networks can result in the discovery of important patterns and potentially shed light on important properties governing the growth of such networks.

It has been shown that most of these networks exhibit strong modular nature or community structure. An important research agenda thus is to identify communities of interest and study their behavior over time. Given the importance of this problem there has been significant activity within this field particularly over the last few years. In this article we survey the landscape and attempt to characterize the principle methods for community discovery (and related variants) and identify current and emerging trends as well as crosscutting research issues within this dynamic field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Abello, P. Pardalos, and MGC Resende. On maximum clique problems in very large graphs. In External memory algorithms, pages 119–130. American Mathematical Society, 1999.

    Google Scholar 

  2. L.A. Adamic and N. Glance. The political blogosphere and the 2004 US election: divided they blog. In Proceedings of the 3rd international workshop on Link discovery, page 43. ACM, 2005.

    Google Scholar 

  3. Charu C. Aggarwal, Yuchen Zhao, and Philip S. Yu. On clustering graph streams. In SDM, pages 478–489, 2010.

    Google Scholar 

  4. R. Albert, H. Jeong, and A.L. Barabási. Diameter of the World-Wide Web. Nature, 401(6749):130–131, 1999.

    Article  Google Scholar 

  5. P. Aloy and R.B. Russell. The third dimension for protein interactions and complexes. Trends in biochemical sciences, 27(12):633–638, 2002.

    Article  Google Scholar 

  6. R. Andersen, F. Chung, and K. Lang. Local graph partitioning using pagerank vectors. In FOCS ’06: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, pages 475–486, Washington, DC, USA, 2006. IEEE Computer Society.

    Google Scholar 

  7. R. Andersen and K.J. Lang. Communities from seed sets. In WWW ’06: Proceedings of the 15th international conference on World Wide Web, page 232. ACM, 2006.

    Google Scholar 

  8. S. Asur, S. Parthasarathy, and D. Ucar. An ensemble approach for clustering scalefree graphs. In LinkKDD workshop, 2006.

    Google Scholar 

  9. S. Asur, S. Parthasarathy, and D. Ucar. An event-based framework for characterizing the evolutionary behavior of interaction graphs. In KDD ’07: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 913–921, New York, NY, USA, 2007. ACM.

    Google Scholar 

  10. Sitaram Asur and Srinivasan Parthasarathy. A viewpoint-based approach for interaction graph analysis. In KDD ’09: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 79–88, New York, NY, USA, 2009. ACM.

    Google Scholar 

  11. A.L. Barabási and E. Bonabeau. Scale-free networks. Scientific American, 288(5):60, 2003.

    Article  Google Scholar 

  12. A.L. Barabási and RE Crandall. Linked: The new science of networks. American journal of Physics, 71:409, 2003.

    Article  Google Scholar 

  13. S.T. Barnard and H.D. Simon. Fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems. Concurrency Practice and Experience, 6(2):101–118, 1994.

    Article  Google Scholar 

  14. J. Bascompte, P. Jordano, C.J. Melián, and J.M. Olesen. The nested assembly of plant–animal mutualistic networks. Proceedings of the National Academy of Sciences of the United States of America, 100(16):9383, 2003.

    Google Scholar 

  15. M.L. Bech and E. Atalay. The topology of the federal funds market. Working Paper Series, 2008.

    Google Scholar 

  16. T.Y. Berger-Wolf and J. Saia. A framework for analysis of dynamic social networks. In KDD ’06: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, page 528. ACM, 2006.

    Google Scholar 

  17. Board on Army Science and Technology. Strategy for an Army Center for Network Science, Technology, and Experim entation. The National Academies Press, 2007.

    Google Scholar 

  18. U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, and D. Wagner. On finding graph clusterings with maximum modularity. In Graph-Theoretic Concepts in Computer Science, pages 121–132. Springer, 2007.

    Google Scholar 

  19. A.Z. Broder, S.C. Glassman, M.S. Manasse, and G. Zweig. Syntactic clustering of the web. Computer Networks and ISDN Systems, 29(8-13):1157–1166, 1997.

    Article  Google Scholar 

  20. S. Brohee and J. Van Helden. Evaluation of clustering algorithms for protein-protein interaction networks. BMC bioinformatics, 7(1):488, 2006.

    Article  Google Scholar 

  21. G. Buehrer and K. Chellapilla. A scalable pattern mining approach to web graph compression with communities. In WSDM ’08: Proceedings of the international conference on Web search and web data mining, pages 95–106, New York, NY, USA, 2008. ACM.

    Google Scholar 

  22. G. Buehrer, S. Parthasarathy, and M. Goyder. Data mining on the cell broadband engine. In Proceedings of the 22nd annual international conference on Supercomputing, pages 26–35. ACM, 2008.

    Google Scholar 

  23. D. Cai, Z. Shao, X. He, X. Yan, and J. Han. Mining hidden community in heterogeneous social networks. In Proceedings of the 3rd international workshop on Link discovery, page 65. ACM, 2005.

    Google Scholar 

  24. D. Chakrabarti and C. Faloutsos. Graph mining: Laws, generators, and algorithms. ACM Comput. Surv., 38(1):2, 2006.

    Article  Google Scholar 

  25. D. Chakrabarti, R. Kumar, and A. Tomkins. Evolutionary clustering. In KDD ’06: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 554–560. ACM New York, NY, USA, 2006.

    Google Scholar 

  26. Y. Chi, X. Song, K. Hino, and B.L. Tseng. Evolutionary spectral clustering by incorporating temporal smoothness, October 18 2007. US Patent App. 11/874,395.

    Google Scholar 

  27. F. Chung. Spectral graph theory. CBMS Regional Conference Series in Mathematics, 1997.

    Google Scholar 

  28. F. Chung. Laplacians and the Cheeger inequality for directed graphs. Annals of Combinatorics, 9(1):1–19, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Clauset, M.E.J. Newman, and C. Moore. Finding community structure in very large networks. Physical Review E, 70(6):66111, 2004.

    Article  Google Scholar 

  30. R. DerSimonian and N. Laird. Meta-analysis in clinical trials* 1. Controlled clinical trials, 7(3):177–188, 1986.

    Article  Google Scholar 

  31. I.S. Dhillon, Y. Guan, and B. Kulis. Weighted Graph Cuts without Eigenvectors: AMultilevel Approach. IEEE Trans. Pattern Anal. Mach. Intell., 29(11):1944–1957, 2007.

    Article  Google Scholar 

  32. P. Domingos and M. Richardson. Mining the network value of customers. In KDD ’01: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pages 57–66. ACM, 2001.

    Google Scholar 

  33. J.A. Dunne, R.J. Williams, and N.D. Martinez. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecology Letters, 5(4):558–567, 2002.

    Article  Google Scholar 

  34. M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the internet topology. In Proceedings of the conference on Applications, technologies, architectures, and protocols for computer communication, page 262. ACM, 1999.

    Google Scholar 

  35. M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23(2):298–305, 1973.

    MathSciNet  Google Scholar 

  36. G.W. Flake, S. Lawrence, and C.L. Giles. Efficient identification of web communities. In KDD ’00: Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, page 160. ACM, 2000.

    Google Scholar 

  37. G.W. Flake, S. Lawrence, C.L. Giles, and F.M. Coetzee. Selforganization of the web and identification of communities. Communities, 35(3):66–71, 2002.

    Google Scholar 

  38. S. Fortunato and M. Barthélemy. Resolution limit in community detection. Proceedings of the National Academy of Sciences, 104(1):36, 2007.

    Article  Google Scholar 

  39. M.R. Garey and L. Johnson. Some simplified NP-complete graph problems. Theoretical computer science, 1(3):237–267, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  40. D. Gibson, R. Kumar, and A. Tomkins. Discovering Large Dense Subgraphs in Massive Graphs. In VLDB ’05: Proceedings of the 31st International Conference on Very Large Data Bases, Trondheim, Norway, August 30-September 2, 2005, page 721. ACM, 2005.

    Google Scholar 

  41. M. Girvan and M.E.J. Newman. Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12):7821, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  42. W. Glanzel and A. Schubert. Analysing scientific networks through coauthorship. Handbook of quantitative science and technology research, pages 257–276, 2004.

    Google Scholar 

  43. I. Guy, M. Jacovi, E. Shahar, N. Meshulam, V. Soroka, and S. Farrell. Harvesting with SONAR: the value of aggregating social network information. In Proceeding of the twenty-sixth annual SIGCHI conference on Human factors in computing systems, pages 1017–1026. ACM, 2008.

    Google Scholar 

  44. G. C. Homans. The Human Group. New York: Harcourt, Brace, 1950.

    Google Scholar 

  45. J. Huang, T. Zhu, and D. Schuurmans. Web communities identification from random walks. Lecture Notes in Computer Science, 4213:187, 2006.

    Article  Google Scholar 

  46. R.F. i Cancho. The small world of human language. Proceedings of the Royal Society B: Biological Sciences, 268(1482):2261–2265, 2001.

    Article  Google Scholar 

  47. H. Jeong, S.P. Mason, A.L. Barabási, and Z.N. Oltvai. Lethality and centrality in protein networks. Nature, 411(6833):41–42, 2001.

    Article  Google Scholar 

  48. U. Kang, C. Tsourakakis, A.P. Appel, C. Faloutsos, and J. Leskovec. Radius plots for mining tera-byte scale graphs: Algorithms, patterns, and observations. In SIAM International Conference on Data Mining, 2010.

    Google Scholar 

  49. U Kang, C.E Tsourakakis, and C. Faloutsos. Pegasus: Mining peta-scale graphs. Knowledge and Information Systems, 2010.

    Google Scholar 

  50. R. Kannan, S. Vempala, and A. Veta. On clusterings-good, bad and spectral. In FOCS ’00, page 367. IEEE Computer Society, 2000.

    Google Scholar 

  51. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing, 20, 1999.

    Google Scholar 

  52. L. Kaufman and PJ Rousseeuw. Finding groups in data; an introduction to cluster analysis. Wiley Series in Probability and Mathematical Statistics. Applied Probability and Statistics Section (EUA)., 1990.

    Google Scholar 

  53. D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence through a social network. In KDD ’03: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 137–146, New York, NY, USA, 2003. ACM.

    Google Scholar 

  54. B. Kernighan and S. Lin. An Efficient Heuristic Procedure for partitioning graphs. The Bell System Technical J., 49, 1970.

    Google Scholar 

  55. M.S. Kim and J. Han. A particle-and-density based evolutionary clustering method for dynamic networks. Proceedings of the VLDB Endowment, 2(1):622–633, 2009.

    Google Scholar 

  56. Y. Koren. The BellKor Solution to the Netflix Grand Prize. KorBell Team’s Report to Netflix, 2009.

    Google Scholar 

  57. K. Lang and S. Rao. A flow-based method for improving the expansion or conductance of graph cuts. Lecture notes in computer science, pages 325–337, 2004.

    Google Scholar 

  58. E.A. Leicht and M.E.J. Newman. Community structure in directed networks. Physical review letters, 100(11):118703, 2008.

    Article  Google Scholar 

  59. J. Leskovec, L.A. Adamic, and B.A. Huberman. The dynamics of viral marketing. ACM Transactions on the Web (TWEB), 1(1):5, 2007.

    Article  Google Scholar 

  60. J. Leskovec, K.J. Lang, A. Dasgupta, and M.W. Mahoney. Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters. CoRR, abs/0810.1355, 2008.

    Google Scholar 

  61. J. Leskovec, K.J. Lang, A. Dasgupta, and M.W. Mahoney. Statistical properties of community structure in large social and information networks. In WWW ’08, pages 695–704, New York, NY, USA, 2008. ACM.

    Google Scholar 

  62. L. Li, C.J. Stoeckert, and D.S. Roos. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res, 13(9):2178–2189, September 2003.

    Article  Google Scholar 

  63. Y.R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B.L. Tseng. Facetnet: a framework for analyzing communities and their evolutions in dynamic networks. In WWW ’08: Proceeding of the 17th international conference on World Wide Web, pages 685–694, New York, NY, USA, 2008. ACM.

    Google Scholar 

  64. Y.R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B.L. Tseng. Analyzing communities and their evolutions in dynamic social networks. ACM Transactions on Knowledge Discovery from Data (TKDD), 3(2):1–31, 2009.

    Article  Google Scholar 

  65. D. Lusseau. The emergent properties of a dolphin social network. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(Suppl 2):S186, 2003.

    Google Scholar 

  66. M. Meila andW. Pentney. Clustering by weighted cuts in directed graphs. In Proceedings of the 7th SIAM International Conference on Data Mining, pages 135–144. Citeseer, 2007.

    Google Scholar 

  67. M. Meila and J. Shi. A random walks view of spectral segmentation. AI and Statistics (AISTATS), 2001, 2001.

    Google Scholar 

  68. J. Memmott, N.M. Waser, and M.V. Price. Tolerance of pollination networks to species extinctions. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(1557):2605, 2004.

    Google Scholar 

  69. J.M. Montoya et al. Small world patterns in food webs. Journal of theoretical biology, 214(3):405–412, 2002.

    Article  MathSciNet  Google Scholar 

  70. F. Moser, R. Ge, and M. Ester. Joint cluster analysis of attribute and relationship data withouta-priori specification of the number of clusters. In KDD ’07: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 510–519. ACM New York, NY, USA, 2007.

    Google Scholar 

  71. F. Murray. Innovation as co-evolution of scientific and technological networks: exploring tissue engineering. Research Policy, 31(8-9):1389–1403, 2002.

    Article  Google Scholar 

  72. S.F. Nadel. The Theory of Social Structure. London: Cohen and West, 1957.

    Google Scholar 

  73. R.A. Negoescu, B. Adams, D. Phung, S. Venkatesh, and D. Gatica-Perez. Flickr hypergroups. In Proceedings of the seventeen ACM international conference on Multimedia, pages 813–816. ACM, 2009.

    Google Scholar 

  74. M. E. J. Newman. Fast algorithm for detecting community structure in networks. Physical Review E, 69(6):066133, 2004.

    Article  Google Scholar 

  75. M.E.J. Newman. Assortative mixing in networks. Physical Review Letters, 89(20):208701, 2002.

    Article  Google Scholar 

  76. M.E.J. Newman. A measure of betweenness centrality based on random walks. Social networks, 27(1):39–54, 2005.

    Article  Google Scholar 

  77. M.E.J. Newman. Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103(23):8577, 2006.

    Google Scholar 

  78. M.E.J. Newman and M. Girvan. Finding and evaluating community structure in networks. Phys. Rev. E, 69(2):026113, Feb 2004.

    Article  Google Scholar 

  79. K. Nowicki and T.A.B. Snijders. Estimation and prediction for stochastic blockstructures. Journal of the American Statistical Association, 96(455):1077–1087, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  80. L. Palen and S.B. Liu. Citizen communications in crisis: anticipating a future of ICT-supported public participation. In Proceedings of the SIGCHI conference on Human factors in computing systems, page 736. ACM, 2007.

    Google Scholar 

  81. S. Papadimitriou and J. Sun. Disco: Distributed co-clustering with Map-Reduce: A case study towards petabyte-scale end-to-end mining. In Eighth IEEE International Conference on Data Mining, 2008. ICDM’08, pages 512–521, 2008.

    Google Scholar 

  82. S. Parthasarathy. Data mining at the crossroads: successes, failures and learning from them. In KDD ’07: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, page 1055. ACM, 2007.

    Google Scholar 

  83. S. Parthasarathy, S. Tatikonda, G. Buehrer, and A. Ghoting. Next Generation of Data Mining, chapter Architecture Conscious Data Mining: Current Directions and Future Outlook, pages 261–280. Chapman and Hall/CRC, 2008.

    Google Scholar 

  84. N. Pathak, C. DeLong, A. Banerjee, and K. Erickson. Social topic models for community extraction. In The 2nd SNA-KDD Workshop, volume 8, 2008.

    Google Scholar 

  85. A. Perer and B. Shneiderman. Balancing systematic and flexible exploration of social networks. IEEE Transactions on Visualization and Computer Graphics, pages 693–700, 2006.

    Google Scholar 

  86. J. Podani, Z.N. Oltvai, H. Jeong, B. Tombor, A.L. Barabási, and E. Szathmary. Comparable system-level organization of Archaea and Eukaryotes. Nature genetics, 29(1):54–56, 2001.

    Article  Google Scholar 

  87. P. Raghavan. Social networks: from the Web to the enterprise. IEEE Internet Computing, 6(1):91–94, 2002.

    Article  Google Scholar 

  88. P.K. Reddy, M. Kitsuregawa, P. Sreekanth, and S.S. Rao. A graph based approach to extract a neighborhood customer community for collaborative filtering. In Databases in networked information systems: second international workshop, DNIS 2002, Aizu, Japan, December 16-18, 2002: proceedings, page 188. Springer-Verlag New York Inc, 2002.

    Google Scholar 

  89. S.A. Rice. The identification of blocs in small political bodies. The American Political Science Review, 21(3):619–627, 1927.

    Article  MathSciNet  Google Scholar 

  90. Y. Richter, E. Yom-Tov, and N. Slonim. Predicting customer churn in mobile networks through analysis of social groups. In Proceedings of the 2010 SIAM International Conference on Data Mining, 2010.

    Google Scholar 

  91. E.M. Rogers. Diffusion of innovations. Free Pr, 1995.

    Google Scholar 

  92. E.M. Rogers and D.L. Kincaid. Communication networks: Toward a new paradigm for research. Free Pr, 1981.

    Google Scholar 

  93. V. Satuluri and S. Parthasarathy. Scalable graph clustering using stochastic flows: applications to community discovery. In KDD ’09, pages 737–746, New York, NY, USA, 2009. ACM.

    Google Scholar 

  94. V. Satuluri and S. Parthasarathy. Symmetrizations for clustering directed graphs. In Workshop on Mining and Learning with Graphs, MLG 2010, 2010. Also available as technical report from ftp://ftp.cse.ohio-state.edu/pub/tech-report/2010/TR12.pdf.

    Google Scholar 

  95. V. Satuluri, S. Parthasarathy, and D. Ucar. Markov Clustering of Protein Interaction Networks with Improved Balance and Scalability. In Proceedings of the ACM Conference on Bioinformatics and Computational Biology, 2010.

    Google Scholar 

  96. J. Shi and J. Malik. Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

    Article  Google Scholar 

  97. R.V. Solé and M. Montoya. Complexity and fragility in ecological networks. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1480):2039, 2001.

    Article  Google Scholar 

  98. R.V. Solé and R. Pastor-Satorras. Complex networks in genomics and proteomics. Handbook of Graphs and Networks, pages 147–169, 2002.

    Google Scholar 

  99. E.D. Sontag. Structure and stability of certain chemical networks andapplications to the kinetic proofreading model of T-cell receptor signaltransduction. IEEE transactions on automatic control, 46(7):1028–1047, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  100. D.A. Spielman and N. Srivastava. Graph sparsification by effective resistances. In STOC ’08: Proceedings of the 40th annual ACM symposium on Theory of computing, pages 563–568, New York, NY, USA, 2008. ACM.

    Google Scholar 

  101. D.A. Spielman and S.H. Teng. Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pages 81–90. ACM New York, NY, USA, 2004.

    Google Scholar 

  102. E. Sprinzak, S. Sattath, and H. Margalit. How reliable are experimental protein-protein interaction data? Journal of molecular biology, 327(5):919–923, 2003.

    Article  Google Scholar 

  103. J. Srivastava, R. Cooley, M. Deshpande, and P.N. Tan. Web usage mining: Discovery and applications of usage patterns from web data. ACM SIGKDD Explorations Newsletter, 1(2):23, 2000.

    Article  Google Scholar 

  104. M. Steenstrup. Cluster-based networks. In Ad hoc networking, page 138. Addison-Wesley Longman Publishing Co., Inc., 2001.

    Google Scholar 

  105. A. Strehl and J. Ghosh. Cluster ensembles—a knowledge reuse framework for combining multiple partitions. The Journal of Machine Learning Research, 3:583–617, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  106. J. Sun, C. Faloutsos, S. Papadimitriou, and P.S. Yu. Graphscope: parameter-free mining of large time-evolving graphs. In KDD ’07: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 687–696. ACM New York, NY, USA, 2007.

    Google Scholar 

  107. Y. Sun, J. Han, P. Zhao, Z. Yin, H. Cheng, and T. Wu. RankClus: integrating clustering with ranking for heterogeneous information network analysis. In Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology, pages 565–576. ACM, 2009.

    Google Scholar 

  108. Y. Sun, Y. Yu, and J. Han. Ranking-based clustering of heterogeneous information networks with star network schema. In KDD ’09: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 797–806. ACM, 2009.

    Google Scholar 

  109. S.R. Sundaresan, I.R. Fischhoff, J. Dushoff, and D.I. Rubenstein. Network metrics reveal differences in social organization between two fission–fusion species, Grevy’s zebra and onager. Oecologia, 151(1):140–149, 2007.

    Article  Google Scholar 

  110. P.N. Tan, M. Steinbach, and V. Kumar. Introduction to data mining. Pearson Addison Wesley Boston, 2006.

    Google Scholar 

  111. C. Tantipathananandh, T. Berger-Wolf, and D. Kempe. A framework for community identification in dynamic social networks. In KDD ’07: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, page 726. ACM, 2007.

    Google Scholar 

  112. S.H. Teng. Coarsening, sampling, and smoothing: Elements of the multilevel method. Algorithms for Parallel Processing, 105:247–276, 1999.

    Google Scholar 

  113. N.M. Tichy, M.L. Tushman, and C. Fombrun. Social network analysis for organizations. Academy of Management Review, 4(4):507–519, 1979.

    Article  Google Scholar 

  114. P. Uetz, L. Giot, G. Cagney, T.A. Mansfield, R.S. Judson, J.R. Knight, V. Lockshon, D. a nd Narayan, M. Srinivasan, P. Pochart, et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature, 403(6770):623–627, 2000.

    Article  Google Scholar 

  115. S. Van Dongen. Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht, 2000.

    Google Scholar 

  116. F.A. Von Hayek. The use of knowledge in society. American Economic Review, 35(4):519–530, 1945.

    Google Scholar 

  117. U. Von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416, 2007.

    Article  MathSciNet  Google Scholar 

  118. A. Wagner and D.A. Fell. The small world inside large metabolic networks. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1478):1803, 2001.

    Article  Google Scholar 

  119. N. Wang, S. Parthasarathy, K.L. Tan, and A.K.H. Tung. CSV: visualizing and mining cohesive subgraphs. In Proceedings of the 2008 ACM SIGMOD international conference on Management of data, pages 445–458. ACM, 2008.

    Google Scholar 

  120. X. Wang, N. Mohanty, and A. McCallum. Group and topic discovery from relations and their attributes. Advances in Neural Information Processing Systems, 18:1449, 2006.

    Google Scholar 

  121. S. Wasserman and K. Faust. Social network analysis: Methods and applications. Cambridge Univ Pr, 1994.

    Google Scholar 

  122. D.J. Watts. Small worlds: the dynamics of networks between order and randomness. Princeton Univ Press, 2003.

    Google Scholar 

  123. R.S.Weiss and E. Jacobson. A method for the analysis of the structure of complex organizations. American Sociological Review, 20(6):661–668, 1955.

    Article  Google Scholar 

  124. J. Xu and H. Chen. Criminal network analysis and visualization. Commun. ACM, 48(6):100–107, 2005.

    Article  Google Scholar 

  125. X. Yang, S. Asur, S. Parthasarathy, and S. Mehta. A visual-analytic toolkit for dynamic interaction graphs. In Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 1016–1024. ACM, 2008.

    Google Scholar 

  126. W.W. Zachary. An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33(4):452–473, 1977.

    Google Scholar 

  127. D. Zhou, J. Huang, and B. Scholkopf. Learning from labeled and unlabeled data on a directed graph. In ICML ’05, pages 1036–1043, 2005.

    Google Scholar 

  128. D. Zhou, E. Manavoglu, J. Li, C.L. Giles, and H. Zha. Probabilistic models for discovering e-communities. In WWW ’06: Proceedings of the 15th international conference onWorldWideWeb, page 182. ACM, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Parthasarathy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Parthasarathy, S., Ruan, Y., Satuluri, V. (2011). Community Discovery in Social Networks: Applications, Methods and Emerging Trends. In: Aggarwal, C. (eds) Social Network Data Analytics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8462-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8462-3_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-8461-6

  • Online ISBN: 978-1-4419-8462-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics