Skip to main content

Environmental Insults on Spermatogenesis

  • Chapter
  • First Online:
Biennial Review of Infertility

Abstract

The frequency of defective spermatogenesis and accompanying decreases in sperm parameters such as sperm count and motility appears to be on the increase. Arguably one of the most compelling reasons for this phenomenon is the influence of environmental factors on male reproduction. Despite spermatogenesis being a function of only the mature testis, environmental insults during maternal, perinatal, and prepubertal phases can indirectly influence eventual sperm production in the adult male. It is believed that exposure during these phases of the developing testis leads to irreversible effects on spermatogenesis, while the accompanying effects of adulthood exposure are in all probability reversible. This chapter explores the various environmental factors that can influence spermatogenesis, both directly and indirectly (i.e., exposure during all the stages from the developing fetus all the way up to and in the adult male). In this overview, not only are the effects of environmental chemicals and toxins discussed, but the focus is also on several lifestyle factors and occupational exposure that can impinge on the process of sperm production. Furthermore, the role of epigenetic defects that can result in defects in transgenerational inheritance due to environmental insults is also investigated briefly. Despite the lack of conclusive studies, it is evident from this overview that there are enough compelling reasons to believe that the future of male gamete production may be actively affected by the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Godmann M, Lambrot R, Kimmins S. The dynamic epigenetic program in male germ cells: its role in spermatogenesis, testis cancer, and its response to the environment. Microsc Res Tech. 2009;72(8):603–19.

    PubMed  CAS  Google Scholar 

  2. Sharpe RM. Environmental/lifestyle effects on spermatogenesis. Philos Trans R Soc Lond. 2010; 365(1546):1697–712.

    CAS  Google Scholar 

  3. Toppari J, Larsen JC, Christiansen P, et al. Male reproductive health and environmental xenoestrogens. Environ Health Perspect. 1996;104 Suppl 4:741–803.

    PubMed  CAS  Google Scholar 

  4. Irvine S, Cawood E, Richardson D, MacDonald E, Aitken J. Evidence of deteriorating semen quality in the United Kingdom: birth cohort study in 577 men in Scotland over 11 years. BMJ. 1996;312(7029): 467–71.

    PubMed  CAS  Google Scholar 

  5. Andersen AG, Jensen TK, Carlsen E, et al. High frequency of sub-optimal semen quality in an unselected population of young men. Hum Reprod. 2000;15(2): 366–72.

    PubMed  CAS  Google Scholar 

  6. Swan SH, Elkin EP, Fenster L. The question of declining sperm density revisited: an analysis of 101 studies published 1934-1996. Environ Health Perspect. 2000; 108(10):961–6.

    PubMed  CAS  Google Scholar 

  7. Irvine DS. Declining sperm quality: a review of facts and hypotheses. Baillières Clin Obstet Gynaecol. 1997;11(4):655–71.

    PubMed  CAS  Google Scholar 

  8. Carlsen E, Giwercman A, Keiding N, Skakkebaek NE. Evidence for decreasing quality of semen during past 50 years. BMJ. 1992;305(6854):609–13.

    PubMed  CAS  Google Scholar 

  9. Agarwal A, Desai NR, Ruffoli R, Carpi A. Lifestyle and testicular dysfunction: a brief update. Biomed Pharmacother. 2008;62(8):550–3.

    PubMed  Google Scholar 

  10. Droller MJ. Environment and the genitourinary tract. Otolaryngol Head Neck Surg. 1996;114(2):248–52.

    PubMed  CAS  Google Scholar 

  11. Aitken RJ, Koopman P, Lewis SE. Seeds of concern. Nature. 2004;432(7013):48–52.

    PubMed  CAS  Google Scholar 

  12. Bribiescas RG. Reproductive ecology and life history of the human male. Am J Phys Anthropol. 2001;Suppl 33:148–76.

    Google Scholar 

  13. Mann DR, Gould KG, Collins DC, Wallen K. Blockade of neonatal activation of the pituitary-testicular axis: effect on peripubertal luteinizing ­hormone and testosterone secretion and on testicular development in male monkeys. J Clin Endocrinol Metab. 1989;68(3):600–7.

    PubMed  CAS  Google Scholar 

  14. Orth JM, Jester WF, Li LH, Laslett AL. Gonocyte-Sertoli cell interactions during development of the neonatal rodent testis. Curr Top Dev Biol. 2000;50: 103–24.

    PubMed  CAS  Google Scholar 

  15. Rajpert-De Meyts E. Developmental model for the pathogenesis of testicular carcinoma in situ: genetic and environmental aspects. Hum Reprod Update. 2006;12(3):303–23.

    PubMed  CAS  Google Scholar 

  16. Mitchell RT, Cowan G, Morris KD, et al. Germ cell differentiation in the marmoset (Callithrix jacchus) during fetal and neonatal life closely parallels that in the human. Hum Reprod. 2008;23(12):2755–65.

    PubMed  CAS  Google Scholar 

  17. Johnson L, Thompson Jr DL, Varner DD. Role of Sertoli cell number and function on regulation of spermatogenesis. Anim Reprod Sci. 2008;105(1–2): 23–51.

    PubMed  CAS  Google Scholar 

  18. McLachlan RI, Wreford NG, Robertson DM, de Kretser DM. Hormonal control of spermatogenesis. Trends Endocrinol Metab. 1995;6(3):95–101.

    PubMed  CAS  Google Scholar 

  19. Johnson L. Spermatogenesis and aging in the human. J Androl. 1986;7(6):331–54.

    PubMed  CAS  Google Scholar 

  20. Johnson L, Zane RS, Petty CS, Neaves WB. Quantification of the human Sertoli cell population: its distribution, relation to germ cell numbers, and age-related decline. Biol Reprod. 1984;31(4):785–95.

    PubMed  CAS  Google Scholar 

  21. Andersson AM, Toppari J, Haavisto AM, et al. Longitudinal reproductive hormone profiles in infants: peak of inhibin B levels in infant boys exceeds levels in adult men. J Clin Endocrinol Metab. 1998;83(2): 675–81.

    PubMed  CAS  Google Scholar 

  22. Dym M, Raj HG. Response of adult rat Sertoli cells and Leydig cells to depletion of luteinizing hormone and testosterone. Biol Reprod. 1977;17(5):676–96.

    PubMed  CAS  Google Scholar 

  23. Feig LA, Bellve AR, Erickson NH, Klagsbrun M. Sertoli cells contain a mitogenic polypeptide. Proc Natl Acad Sci USA. 1980;77(8):4774–8.

    PubMed  CAS  Google Scholar 

  24. Jutte NH, Jansen R, Grootegoed JA, Rommerts FF, Clausen OP, van der Molen HJ. Regulation of survival of rat pachytene spermatocytes by lactate supply from Sertoli cells. J Reprod Fertil. 1982;65(2):431–8.

    PubMed  CAS  Google Scholar 

  25. Jutte NH, Jansen R, Grootegoed JA, Rommerts FF, van der Molen HJ. FSH stimulation of the production of pyruvate and lactate by rat Sertoli cells may be involved in hormonal regulation of spermatogenesis. J Reprod Fertil. 1983;68(1):219–26.

    PubMed  CAS  Google Scholar 

  26. Tres LL, Smith EP, Van Wyk JJ, Kierszenbaum AL. Immunoreactive sites and accumulation of somatomedin-C in rat Sertoli-spermatogenic cell co-cultures. Exp Cell Res. 1986;162(1):33–50.

    PubMed  CAS  Google Scholar 

  27. Bellve AR, Zheng W. Growth factors as autocrine and paracrine modulators of male gonadal functions. J Reprod Fertil. 1989;85(2):771–93.

    PubMed  CAS  Google Scholar 

  28. Johnson L, Varner DD, Thompson Jr DL. Effect of age and season on the establishment of spermatogenesis in the horse. J Reprod Fertil Suppl. 1991;44: 87–97.

    PubMed  CAS  Google Scholar 

  29. Sharpe RM, McKinnell C, Kivlin C, Fisher JS. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction. 2003;125(6):769–84.

    PubMed  CAS  Google Scholar 

  30. Scott HM, Hutchison GR, Mahood IK, et al. Role of androgens in fetal testis development and dysgenesis. Endocrinology. 2007;148(5):2027–36.

    PubMed  CAS  Google Scholar 

  31. Johnston H, Baker PJ, Abel M, et al. Regulation of Sertoli cell number and activity by follicle-stimulating hormone and androgen during postnatal development in the mouse. Endocrinology. 2004;145(1):318–29.

    PubMed  CAS  Google Scholar 

  32. Cortes D, Muller J, Skakkebaek NE. Proliferation of Sertoli cells during development of the human testis assessed by stereological methods. Int J Androl. 1987;10(4):589–96.

    PubMed  CAS  Google Scholar 

  33. Skakkebaek NE, Rajpert-De Meyts E, Main KM. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod. 2001;16(5):972–8.

    PubMed  CAS  Google Scholar 

  34. Mocarelli P, Gerthoux PM, Patterson Jr DG, et al. Dioxin exposure, from infancy through puberty, produces endocrine disruption and affects human semen quality. Environ Health Perspect. 2008;116(1):70–7.

    PubMed  CAS  Google Scholar 

  35. Storgaard L, Bonde JP, Ernst E, et al. Does smoking during pregnancy affect sons’ sperm counts? Epidemiology. 2003;14(3):278–86.

    PubMed  Google Scholar 

  36. Jensen TK, Jorgensen N, Punab M, et al. Association of in utero exposure to maternal smoking with reduced semen quality and testis size in adulthood: a cross-sectional study of 1, 770 young men from the general population in five European countries. Am J Epidemiol. 2004;159(1):49–58.

    PubMed  Google Scholar 

  37. Jensen TK, Andersson AM, Jorgensen N, et al. Body mass index in relation to semen quality and reproductive hormones among 1, 558 Danish men. Fertil Steril. 2004;82(4):863–70.

    PubMed  CAS  Google Scholar 

  38. Ramlau-Hansen CH, Thulstrup AM, Storgaard L, Toft G, Olsen J, Bonde JP. Is prenatal exposure to tobacco smoking a cause of poor semen quality? A follow-up study. Am J Epidemiol. 2007;165(12):1372–9.

    PubMed  Google Scholar 

  39. Kizu R, Okamura K, Toriba A, et al. A role of aryl hydrocarbon receptor in the antiandrogenic effects of polycyclic aromatic hydrocarbons in LNCaP human prostate carcinoma cells. Arch Toxicol. 2003;77(6): 335–43.

    PubMed  CAS  Google Scholar 

  40. Barnes-Ellerbe S, Knudsen KE, Puga A. 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin blocks androgen-dependent cell proliferation of LNCaP cells through modulation of pRB phosphorylation. Mol Pharmacol. 2004;66(3):502–11.

    PubMed  CAS  Google Scholar 

  41. Ramlau-Hansen CH, Nohr EA, Thulstrup AM, Bonde JP, Storgaard L, Olsen J. Is maternal obesity related to semen quality in the male offspring? A pilot study. Hum Reprod. 2007;22(10):2758–62.

    PubMed  CAS  Google Scholar 

  42. Swan SH, Liu F, Overstreet JW, Brazil C, Skakkebaek NE. Semen quality of fertile US males in relation to their mothers’ beef consumption during pregnancy. Hum Reprod. 2007;22(6):1497–502.

    PubMed  CAS  Google Scholar 

  43. Sharpe RM. The ‘oestrogen hypothesis’ – where do we stand now? Int J Androl. 2003;26(1):2–15.

    PubMed  CAS  Google Scholar 

  44. Hughes PI. How vulnerable is the developing testis to the external environment? Arch Dis Child. 2000; 83(4):281–2.

    PubMed  CAS  Google Scholar 

  45. Partsch CJ, Aukamp M, Sippell WG. Scrotal temperature is increased in disposable plastic lined nappies. Arch Dis Child. 2000;83(4):364–8.

    PubMed  CAS  Google Scholar 

  46. de Rooij DG, Russell LD. All you wanted to know about spermatogonia but were afraid to ask. J Androl. 2000;21(6):776–98.

    PubMed  Google Scholar 

  47. Lahdetie J. Occupation- and exposure-related studies on human sperm. J Occup Environ Med. 1995;37(8): 922–30.

    PubMed  CAS  Google Scholar 

  48. Sharpe RM. Lifestyle and environmental contribution to male infertility. Br Med Bull. 2000;56(3): 630–42.

    PubMed  CAS  Google Scholar 

  49. Le HH, Carlson EM, Chua JP, Belcher SM. Bisphenol A is released from polycarbonate drinking bottles and mimics the neurotoxic actions of estrogen in developing cerebellar neurons. Toxicol Lett. 2008;176(2): 149–56.

    PubMed  CAS  Google Scholar 

  50. Korasli D, Ziraman F, Ozyurt P, Cehreli SB. Microleakage of self-etch primer/adhesives in endodontically treated teeth. J Am Dent Assoc. 2007; 138(5):634–40.

    PubMed  CAS  Google Scholar 

  51. Chitra KC, Latchoumycandane C, Mathur PP. Induction of oxidative stress by bisphenol A in the epididymal sperm of rats. Toxicology. 2003;185(1–2): 119–27.

    PubMed  CAS  Google Scholar 

  52. Kabuto H, Amakawa M, Shishibori T. Exposure to bisphenol A during embryonic/fetal life and infancy increases oxidative injury and causes underdevelopment of the brain and testis in mice. Life Sci. 2004; 74(24):2931–40.

    PubMed  CAS  Google Scholar 

  53. Obata T, Kubota S. Formation of hydroxy radicals by environmental estrogen-like chemicals in rat striatum. Neurosci Lett. 2000;296(1):41–4.

    PubMed  CAS  Google Scholar 

  54. Gesler RM. Toxicology of di-2-ethylhexyl phthalate and other phthalic acid ester plasticizers. Environ Health Perspect. 1973;3:73–9.

    PubMed  CAS  Google Scholar 

  55. Peakall DB. Phthalate esters: occurrence and biological effects. Residue Rev. 1975;54:1–41.

    PubMed  CAS  Google Scholar 

  56. Ishihara M, Itoh M, Miyamoto K, et al. Spermatogenic disturbance induced by di-(2-ethylhexyl) phthalate is significantly prevented by treatment with antioxidant vitamins in the rat. Int J Androl. 2000;23(2):85–94.

    PubMed  CAS  Google Scholar 

  57. Third National Report on Human Exposure to Environmental Chemicals. In: Center for Disease Control, 2005. http://www.cluin.org/download/­contaminantfocus/pcb/third-report.pdf 

  58. Lee E, Ahn MY, Kim HJ, et al. Effect of di(n-butyl) phthalate on testicular oxidative damage and antioxidant enzymes in hyperthyroid rats. Environ Toxicol. 2007;22(3):245–55.

    PubMed  CAS  Google Scholar 

  59. Kasahara E, Sato EF, Miyoshi M, et al. Role of ­oxidative stress in germ cell apoptosis induced by di(2-ethylhexyl)phthalate. Biochem J. 2002;365(Pt 3):849–56.

    PubMed  CAS  Google Scholar 

  60. Park JD, Habeebu SS, Klaassen CD. Testicular toxicity of di-(2-ethylhexyl)phthalate in young Sprague-Dawley rats. Toxicology. 2002;171(2–3):105–15.

    PubMed  CAS  Google Scholar 

  61. Chitra KC, Mathur PP. Vitamin E prevents nonylphenol-induced oxidative stress in testis of rats. Indian J Exp Biol. 2004;42(2):220–3.

    PubMed  CAS  Google Scholar 

  62. Hayashi K, Nakae A, Fukushima Y, et al. Contamination of rice by etofenprox, diethyl phthalate and alkyl­phenols: effects on first delivery and sperm count in mice. J Toxicol Sci. 2010;35(1):49–55.

    PubMed  CAS  Google Scholar 

  63. Duty SM, Silva MJ, Barr DB, et al. Phthalate exposure and human semen parameters. Epidemiology. 2003;14(3):269–77.

    PubMed  Google Scholar 

  64. Hauser R, Chen Z, Pothier L, Ryan L, Altshul L. The relationship between human semen parameters and environmental exposure to polychlorinated biphenyls and p, p’-DDE. Environ Health Perspect. 2003; 111(12):1505–11.

    PubMed  CAS  Google Scholar 

  65. Hsu PC, Guo YL. Antioxidant nutrients and lead toxicity. Toxicology. 2002;180(1):33–44.

    PubMed  CAS  Google Scholar 

  66. Acharya UR, Acharya S, Mishra M. Lead acetate induced cytotoxicity in male germinal cells of Swiss mice. Ind Health. 2003;41(3):291–4.

    PubMed  CAS  Google Scholar 

  67. Xu DX, Shen HM, Zhu QX, et al. The associations among semen quality, oxidative DNA damage in human spermatozoa and concentrations of cadmium, lead and selenium in seminal plasma. Mutat Res. 2003;534(1–2):155–63.

    PubMed  CAS  Google Scholar 

  68. Naha N, Chowdhury AR. Inorganic lead exposure in battery and paint factory: effect on human sperm structure and functional activity. J UOEH. 2006; 28(2):157–71.

    PubMed  CAS  Google Scholar 

  69. Shiau CY, Wang JD, Chen PC. Decreased fecundity among male lead workers. Occup Environ Med. 2004;61(11):915–23.

    PubMed  Google Scholar 

  70. Figa-Talamanca I, Traina ME, Urbani E. Occupa­tional exposures to metals, solvents and pesticides: recent evidence on male reproductive effects and biological markers. Occup Med (Lond). 2001;51(3):174–88.

    CAS  Google Scholar 

  71. Ahamed M, Siddiqui MK. Low level lead exposure and oxidative stress: current opinions. Clin Chim Acta. 2007;383(1–2):57–64.

    PubMed  CAS  Google Scholar 

  72. Benoff S, Hauser R, Marmar JL, Hurley IR, Napolitano B, Centola GM. Cadmium concentrations in blood and seminal plasma: correlations with sperm number and motility in three male populations (infertility patients, artificial insemination donors, and unselected volunteers). Mol Med. 2009;15(7–8):248–62.

    PubMed  CAS  Google Scholar 

  73. Gunnarsson D, Svensson M, Selstam G, Nordberg G. Pronounced induction of testicular PGF(2 alpha) and suppression of testosterone by cadmium-prevention by zinc. Toxicology. 2004;200(1):49–58.

    PubMed  CAS  Google Scholar 

  74. Yang JM, Arnush M, Chen QY, Wu XD, Pang B, Jiang XZ. Cadmium-induced damage to primary cultures of rat Leydig cells. Reprod Toxicol. 2003;17(5):553–60.

    PubMed  CAS  Google Scholar 

  75. Benoff S, Auborn K, Marmar JL, Hurley IR. Link between low-dose environmentally relevant cadmium exposures and asthenozoospermia in a rat model. Fertil Steril. 2008;89(2 Suppl):e73–9.

    PubMed  Google Scholar 

  76. Siu ER, Mruk DD, Porto CS, Cheng CY. Cadmium-induced testicular injury. Toxicol Appl Pharmacol. 2009;238(3):240–9.

    PubMed  CAS  Google Scholar 

  77. Gennart JP, Buchet JP, Roels H, Ghyselen P, Ceulemans E, Lauwerys R. Fertility of male workers exposed to cadmium, lead, or manganese. Am J Epidemiol. 1992;135(11):1208–19.

    PubMed  CAS  Google Scholar 

  78. Bonde JP. The risk of male subfecundity attributable to welding of metals. Studies of semen quality, infertility, fertility, adverse pregnancy outcome and childhood malignancy. Int J Androl. 1993;16 Suppl 1:1–29.

    PubMed  Google Scholar 

  79. Jurasovic J, Cvitkovic P, Pizent A, Colak B, Telisman S. Semen quality and reproductive endocrine function with regard to blood cadmium in Croatian male subjects. Biometals. 2004;17(6):735–43.

    PubMed  CAS  Google Scholar 

  80. Telisman S, Cvitkovic P, Jurasovic J, Pizent A, Gavella M, Rocic B. Semen quality and reproductive endocrine function in relation to biomarkers of lead, cadmium, zinc, and copper in men. Environ Health Perspect. 2000;108(1):45–53.

    PubMed  CAS  Google Scholar 

  81. Chia SE, Xu B, Ong CN, Tsakok FM, Lee ST. Effect of cadmium and cigarette smoking on human semen quality. Int J Fertil Menopausal Stud. 1994;39(5):292–8.

    PubMed  CAS  Google Scholar 

  82. Vitousek PM, Aber J, Howarth RW, et al. Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl. 1997;7:737–50.

    Google Scholar 

  83. Vitousek PM, Hattenschwiler S, Olander L, Allison S. Nitrogen and nature. Ambio. 2002;31(2):97–101.

    PubMed  Google Scholar 

  84. Aber JD. Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Trends Ecol Evol. 1992; 7:220–3.

    PubMed  CAS  Google Scholar 

  85. Wu TP, Huang BM, Tsai HC, Lui MC, Liu MY. Effects of nitric oxide on human spermatozoa activity, fertilization and mouse embryonic development. Arch Androl. 2004;50(3):173–9.

    PubMed  CAS  Google Scholar 

  86. Jurewicz J, Hanke W, Radwan M, Bonde JP. Environmental factors and semen quality. Int J Occup Med Environ Health. 2009;22(4):305–29.

    PubMed  Google Scholar 

  87. Wong WY, Zielhuis GA, Thomas CM, Merkus HM, Steegers-Theunissen RP. New evidence of the influence of exogenous and endogenous factors on sperm count in man. Eur J Obstet Gynecol Reprod Biol. 2003;110(1):49–54.

    PubMed  Google Scholar 

  88. Oliva A, Spira A, Multigner L. Contribution of environmental factors to the risk of male infertility. Hum Reprod. 2001;16(8):1768–76.

    PubMed  CAS  Google Scholar 

  89. Chitra KC, Sujatha R, Latchoumycandane C, Mathur PP. Effect of lindane on antioxidant enzymes in epididymis and epididymal sperm of adult rats. Asian J Androl. 2001;3(3):205–8.

    PubMed  CAS  Google Scholar 

  90. Latchoumycandane C, Chitra KC, Mathur PP. 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin (TCDD) induces oxidative stress in the epididymis and epididymal sperm of adult rats. Arch Toxicol. 2003;77(5):280–4.

    PubMed  CAS  Google Scholar 

  91. Latchoumycandane C, Mathur PP. Induction of ­oxidative stress in the rat testis after short-term exposure to the organochlorine pesticide methoxychlor. Arch Toxicol. 2002;76(12):692–8.

    PubMed  CAS  Google Scholar 

  92. Vaithinathan S, Saradha B, Mathur PP. Transient inhibitory effect of methoxychlor on testicular steroidogenesis in rat: an in vivo study. Arch Toxicol. 2008;82(11):833–9.

    PubMed  CAS  Google Scholar 

  93. Defamie N, Mograbi B, Roger C, et al. Disruption of gap junctional intercellular communication by lindane is associated with aberrant localization of connexin43 and zonula occludens-1 in 42GPA9 Sertoli cells. Carcinogenesis. 2001;22(9):1537–42.

    PubMed  CAS  Google Scholar 

  94. Saradha B, Vaithinathan S, Mathur PP. Single exposure to low dose of lindane causes transient decrease in testicular steroidogenesis in adult male Wistar rats. Toxicology. 2008;244(2–3):190–7.

    PubMed  CAS  Google Scholar 

  95. Selmanoglu G, Barlas N, Songur S, Kockaya EA. Carbendazim-induced haematological, biochemical and histopathological changes to the liver and kidney of male rats. Hum Exp Toxicol. 2001;20(12): 625–30.

    PubMed  CAS  Google Scholar 

  96. Carter SD, Hess RA, Laskey JW. The fungicide methyl 2-benzimidazole carbamate causes infertility in male Sprague-Dawley rats. Biol Reprod. 1987; 37(3):709–17.

    PubMed  CAS  Google Scholar 

  97. Akbarsha MA, Kadalmani B, Girija R, Faridha A, Hamid KS. Spermatotoxic effect of carbendazim. Indian J Exp Biol. 2001;39(9):921–4.

    PubMed  CAS  Google Scholar 

  98. Rajeswary S, Kumaran B, Ilangovan R, et al. Modulation of antioxidant defense system by the environmental fungicide carbendazim in Leydig cells of rats. Reprod Toxicol. 2007;24(3–4):371–80.

    PubMed  CAS  Google Scholar 

  99. Kovacic P, Pozos RS. Cell signaling (mechanism and reproductive toxicity): redox chains, radicals, electrons, relays, conduit, electrochemistry, and other medical implications. Birth Defects Res C Embryo Today. 2006;78(4):333–44.

    PubMed  CAS  Google Scholar 

  100. Edelfors S, Hass U, Hougaard KS. Changes in markers of oxidative stress and membrane properties in synaptosomes from rats exposed prenatally to toluene. Pharmacol Toxicol. 2002;90(1):26–31.

    PubMed  CAS  Google Scholar 

  101. Nakai N, Murata M, Nagahama M, et al. Oxidative DNA damage induced by toluene is involved in its male reproductive toxicity. Free Radic Res. 2003; 37(1):69–76.

    PubMed  CAS  Google Scholar 

  102. Xiao G, Pan C, Cai Y, Lin H, Fu Z. Effect of benzene, toluene, xylene on the semen quality of exposed workers. Chin Med J. 1999;112(8):709–12.

    PubMed  CAS  Google Scholar 

  103. Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem. 2003;278(38):36027–31.

    PubMed  CAS  Google Scholar 

  104. Adam-Vizi V. Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal. 2005;7(9–10):1140–9.

    PubMed  CAS  Google Scholar 

  105. Vine MF, Tse CK, Hu P, Truong KY. Cigarette smoking and semen quality. Fertil Steril. 1996;65(4): 835–42.

    PubMed  CAS  Google Scholar 

  106. Kunzle R, Mueller MD, Hanggi W, Birkhauser MH, Drescher H, Bersinger NA. Semen quality of male smokers and nonsmokers in infertile couples. Fertil Steril. 2003;79(2):287–91.

    PubMed  Google Scholar 

  107. Saleh RA, Agarwal A, Sharma RK, Nelson DR, Thomas Jr AJ. Effect of cigarette smoking on levels of seminal oxidative stress in infertile men: a prospective study. Fertil Steril. 2002;78(3):491–9.

    PubMed  Google Scholar 

  108. Ramlau-Hansen CH, Thulstrup AM, Aggerholm AS, Jensen MS, Toft G, Bonde JP. Is smoking a risk factor for decreased semen quality? A cross-sectional analysis. Hum Reprod. 2007;22(1):188–96.

    PubMed  CAS  Google Scholar 

  109. Vine MF, Margolin BH, Morrison HI, Hulka BS. Cigarette smoking and sperm density: a meta-analysis. Fertil Steril. 1994;61(1):35–43.

    PubMed  CAS  Google Scholar 

  110. Traber MG, van der Vliet A, Reznick AZ, Cross CE. Tobacco-related diseases. Is there a role for antioxidant micronutrient supplementation? Clin Chest Med. 2000;21(1):173–87, x.

    Google Scholar 

  111. Cross CE, Halliwell B, Borish ET, et al. Oxygen radicals and human disease. Ann Intern Med. 1987;107(4):526–45.

    PubMed  CAS  Google Scholar 

  112. Richthoff J, Elzanaty S, Rylander L, Hagmar L, Giwercman A. Association between tobacco exposure and reproductive parameters in adolescent males. Int J Androl. 2008;31(1):31–9.

    PubMed  Google Scholar 

  113. Mostafa T, Anis TH, El-Nashar A, Imam H, Othman IA. Varicocelectomy reduces reactive oxygen species levels and increases antioxidant activity of seminal plasma from infertile men with varicocele. Int J Androl. 2001;24(5):261–5.

    PubMed  CAS  Google Scholar 

  114. Fraga CG, Motchnik PA, Wyrobek AJ, Rempel DM, Ames BN. Smoking and low antioxidant levels increase oxidative damage to sperm DNA. Mutat Res. 1996;351(2):199–203.

    PubMed  Google Scholar 

  115. Maddocks S, Hargreave TB, Reddie K, Fraser HM, Kerr JB, Sharpe RM. Intratesticular hormone levels and the route of secretion of hormones from the testis of the rat, guinea pig, monkey and human. Int J Androl. 1993;16(4):272–8.

    PubMed  CAS  Google Scholar 

  116. Piner J, Sutherland M, Millar M, Turner K, Newall D, Sharpe RM. Changes in vascular dynamics of the adult rat testis leading to transient accumulation of seminiferous tubule fluid after administration of a novel 5-hydroxytryptamine (5-HT) agonist. Reprod Toxicol. 2002;16(2):141–50.

    PubMed  CAS  Google Scholar 

  117. Gaur DS, Talekar M, Pathak VP. Effect of cigarette smoking on semen quality of infertile men. Singapore Med J. 2007;48(2):119–23.

    PubMed  CAS  Google Scholar 

  118. Marinelli D, Gaspari L, Pedotti P, Taioli E. Mini-review of studies on the effect of smoking and drinking habits on semen parameters. Int J Hyg Environ Health. 2004; 207(3):185–92.

    PubMed  Google Scholar 

  119. Martini AC, Molina RI, Estofan D, Senestrari D, Fiol de Cuneo M, Ruiz RD. Effects of alcohol and cigarette consumption on human seminal quality. Fertil Steril. 2004;82(2):374–7.

    PubMed  Google Scholar 

  120. Villalta J, Ballesca JL, Nicolas JM, Martinez de Osaba MJ, Antunez E, Pimentel C. Testicular function in asymptomatic chronic alcoholics: relation to ethanol intake. Alcohol Clin Exp Res. 1997;21(1): 128–33.

    PubMed  CAS  Google Scholar 

  121. Boyden TW, Pamenter RW. Effects of ethanol on the male hypothalamic-pituitary-gonadal axis. Endocr Rev. Fall 1983;4(4):389–95.

    Google Scholar 

  122. Muthusami KR, Chinnaswamy P. Effect of chronic alcoholism on male fertility hormones and semen quality. Fertil Steril. 2005;84(4):919–24.

    PubMed  CAS  Google Scholar 

  123. Goverde HJ, Dekker HS, Janssen HJ, Bastiaans BA, Rolland R, Zielhuis GA. Semen quality and frequency of smoking and alcohol consumption – an explorative study. Int J Fertil Menopausal Stud. 1995;40(3):135–8.

    PubMed  CAS  Google Scholar 

  124. Maneesh M, Dutta S, Chakrabarti A, Vasudevan DM. Alcohol abuse-duration dependent decrease in plasma testosterone and antioxidants in males. Indian J Physiol Pharmacol. 2006;50(3):291–6.

    PubMed  CAS  Google Scholar 

  125. Dahchour A, Lallemand F, Ward RJ, De Witte P. Production of reactive oxygen species following acute ethanol or acetaldehyde and its reduction by acamprosate in chronically alcoholized rats. Eur J Pharmacol. 2005;520(1–3):51–8.

    PubMed  CAS  Google Scholar 

  126. Lieber CS. The discovery of the microsomal ethanol oxidizing system and its physiologic and pathologic role. Drug Metab Rev. 2004;36(3–4):511–29.

    PubMed  CAS  Google Scholar 

  127. Agarwal A, Prabakaran SA. Mechanism, measurement, and prevention of oxidative stress in male reproductive physiology. Indian J Exp Biol. 2005;43(11):963–74.

    PubMed  CAS  Google Scholar 

  128. Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J. 1996;313(Pt 1):17–29.

    PubMed  CAS  Google Scholar 

  129. Wu D, Cederbaum AI. Alcohol, oxidative stress, and free radical damage. Alcohol Res Health. 2003;27(4):277–84.

    PubMed  Google Scholar 

  130. Koch OR, Pani G, Borrello S, et al. Oxidative stress and antioxidant defenses in ethanol-induced cell injury. Mol Aspects Med. 2004;25(1–2):191–8.

    PubMed  CAS  Google Scholar 

  131. Shalet SM. Effects of cancer chemotherapy on gonadal function of patients. Cancer Treat Rev. 1980;7(3):141–52.

    PubMed  CAS  Google Scholar 

  132. Schlegel PN, Chang TS, Marshall FF. Antibiotics: potential hazards to male fertility. Fertil Steril. 1991;55(2):235–42.

    PubMed  CAS  Google Scholar 

  133. Ericsson RJ, Baker VF. Binding of tetracycline to mammalian spermatozoa. Nature. 1967;214(5086): 403–4.

    PubMed  CAS  Google Scholar 

  134. O’Morain C, Smethurst P, Dore CJ, Levi AJ. Reversible male infertility due to sulphasalazine: studies in man and rat. Gut. 1984;25(10):1078–84.

    PubMed  Google Scholar 

  135. Hayashi T, Miyata A, Yamada T. The impact of ­commonly prescribed drugs on male fertility. Hum Fertil. 2008;11(3):191–6.

    Google Scholar 

  136. Sikka SC, Wang R. Endocrine disruptors and estrogenic effects on male reproductive axis. Asian J Androl. 2008;10(1):134–45.

    PubMed  CAS  Google Scholar 

  137. Anderson RA, Baird DT. Male contraception. Endocr Rev. 2002;23(6):735–62.

    PubMed  CAS  Google Scholar 

  138. Knuth UA, Maniera H, Nieschlag E. Anabolic steroids and semen parameters in bodybuilders. Fertil Steril. 1989;52(6):1041–7.

    PubMed  CAS  Google Scholar 

  139. Du Plessis SS, Cabler S, McAlister DA, Sabanegh E, Agarwal A. The effect of obesity on sperm disorders and male infertility. Nat Rev Urol. 2010;7(3): 153–61.

    PubMed  Google Scholar 

  140. Song GJ, Norkus EP, Lewis V. Relationship between seminal ascorbic acid and sperm DNA integrity in infertile men. Int J Androl. 2006;29(6):569–75.

    PubMed  CAS  Google Scholar 

  141. Eskenazi B, Kidd SA, Marks AR, Sloter E, Block G, Wyrobek AJ. Antioxidant intake is associated with semen quality in healthy men. Hum Reprod. 2005;20(4):1006–12.

    PubMed  CAS  Google Scholar 

  142. Therond P, Auger J, Legrand A, Jouannet P. alpha-Tocopherol in human spermatozoa and seminal plasma: relationships with motility, antioxidant enzymes and leukocytes. Mol Hum Reprod. 1996;2(10):739–44.

    PubMed  CAS  Google Scholar 

  143. Fraga CG, Motchnik PA, Shigenaga MK, Helbock HJ, Jacob RA, Ames BN. Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc Natl Acad Sci U S A. 1991; 88(24):11003–6.

    PubMed  CAS  Google Scholar 

  144. Hawkes WC, Turek PJ. Effects of dietary selenium on sperm motility in healthy men. J Androl. 2001; 22(5):764–72.

    PubMed  CAS  Google Scholar 

  145. Hammoud AO, Gibson M, Peterson CM, Hamilton BD, Carrell DT. Obesity and male reproductive potential. J Androl. 2006;27(5):619–26.

    PubMed  Google Scholar 

  146. Hammoud AO, Gibson M, Peterson CM, Meikle AW, Carrell DT. Impact of male obesity on infertility: a critical review of the current literature. Fertil Steril. 2008;90(4):897–904.

    PubMed  Google Scholar 

  147. Nielsen TL, Hagen C, Wraae K, et al. Visceral and subcutaneous adipose tissue assessed by magnetic resonance imaging in relation to circulating androgens, sex hormone-binding globulin, and luteinizing hormone in young men. J Clin Endocrinol Metab. 2007;92(7):2696–705.

    PubMed  CAS  Google Scholar 

  148. Fejes I, Koloszar S, Zavaczki Z, Daru J, Szollosi J, Pal A. Effect of body weight on testosterone/estradiol ratio in oligozoospermic patients. Arch Androl. 2006;52(2):97–102.

    PubMed  CAS  Google Scholar 

  149. Kort HI, Massey JB, Elsner CW, et al. Impact of body mass index values on sperm quantity and quality. J Androl. 2006;27(3):450–2.

    PubMed  Google Scholar 

  150. Nguyen RH, Wilcox AJ, Skjaerven R, Baird DD. Men’s body mass index and infertility. Hum Reprod. 2007;22(9):2488–93.

    PubMed  Google Scholar 

  151. Koloszar S, Fejes I, Zavaczki Z, Daru J, Szollosi J, Pal A. Effect of body weight on sperm concentration in normozoospermic males. Arch Androl. 2005;51(4):299–304.

    PubMed  CAS  Google Scholar 

  152. Cabler S, Agarwal A, Flint M, du Plessis SS. Obesity: modern man’s fertility nemesis. Asian J Androl. 2010;12(4):480–9.

    PubMed  Google Scholar 

  153. Shafik A, Olfat S. Scrotal lipomatosis. Br J Urol. 1981;53(1):50–4.

    PubMed  CAS  Google Scholar 

  154. Dandona P, Aljada A, Chaudhuri A, Mohanty P, Garg R. Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation. 2005;111(11): 1448–54.

    PubMed  Google Scholar 

  155. Davi G, Falco A. Oxidant stress, inflammation and atherogenesis. Lupus. 2005;14(9):760–4.

    PubMed  CAS  Google Scholar 

  156. Kodama H, Yamaguchi R, Fukuda J, Kasai H, Tanaka T. Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril. 1997;68(3):519–24.

    PubMed  CAS  Google Scholar 

  157. Twigg J, Fulton N, Gomez E, Irvine DS, Aitken RJ. Analysis of the impact of intracellular reactive oxygen species generation on the structural and functional integrity of human spermatozoa: lipid peroxidation, DNA fragmentation and effectiveness of antioxidants. Hum Reprod. 1998;13(6): 1429–36.

    PubMed  CAS  Google Scholar 

  158. Singer G, Granger DN. Inflammatory responses underlying the microvascular dysfunction associated with obesity and insulin resistance. Microcirculation. 2007;14(4–5):375–87.

    PubMed  CAS  Google Scholar 

  159. Eskiocak S, Gozen AS, Kilic AS, Molla S. Association between mental stress & some antioxidant enzymes of seminal plasma. Indian J Med Res. 2005;122(6):491–6.

    PubMed  CAS  Google Scholar 

  160. Eskiocak S, Gozen AS, Yapar SB, Tavas F, Kilic AS, Eskiocak M. Glutathione and free sulphydryl content of seminal plasma in healthy medical students during and after exam stress. Hum Reprod. 2005;20(9):2595–600.

    PubMed  CAS  Google Scholar 

  161. Eskiocak S, Gozen AS, Taskiran A, Kilic AS, Eskiocak M, Gulen S. Effect of psychological stress on the L-arginine-nitric oxide pathway and semen quality. Braz J Med Biol Res. 2006;39(5):581–8.

    PubMed  CAS  Google Scholar 

  162. Tremellen K. Oxidative stress and male infertility – a clinical perspective. Hum Reprod Update. 2008; 14(3):243–58.

    PubMed  CAS  Google Scholar 

  163. Monder C, Miroff Y, Marandici A, Hardy MP. 11 beta-Hydroxysteroid dehydrogenase alleviates glucocorticoid-mediated inhibition of steroidogenesis in rat Leydig cells. Endocrinology. 1994;134(3): 1199–204.

    PubMed  CAS  Google Scholar 

  164. Ruffoli R, Carpi A, Giambelluca MA, Grasso L, Scavuzzo MC, Giannessi FF. Diazepam administration prevents testosterone decrease and lipofuscin accumulation in testis of mouse exposed to chronic noise stress. Andrologia. 2006;38(5):159–65.

    PubMed  CAS  Google Scholar 

  165. Terman A, Brunk UT. Lipofuscin. Int J Biochem Cell Biol. 2004;36(8):1400–4.

    PubMed  CAS  Google Scholar 

  166. Gao HB, Tong MH, Hu YQ, et al. Mechanisms of glucocorticoid-induced Leydig cell apoptosis. Mol Cell Endocrinol. 2003;199(1–2):153–63.

    PubMed  CAS  Google Scholar 

  167. Ivell R. Lifestyle impact and the biology of the human scrotum. Reprod Biol Endocrinol. 2007; 5:15.

    PubMed  Google Scholar 

  168. Werdelin L, Nilsonne A. The evolution of the scrotum and testicular descent in mammals: a phylogenetic view. J Theor Biol. 1999;196(1):61–72.

    PubMed  CAS  Google Scholar 

  169. Jung A, Schuppe HC. Influence of genital heat stress on semen quality in humans. Andrologia. 2007;39(6): 203–15.

    PubMed  CAS  Google Scholar 

  170. Lue YH, Hikim AP, Swerdloff RS, et al. Single ­exposure to heat induces stage-specific germ cell apoptosis in rats: role of intratesticular testosterone on stage specificity. Endocrinology. 1999;140(4):1709–17.

    PubMed  CAS  Google Scholar 

  171. Lue YH, Lasley BL, Laughlin LS, et al. Mild testicular hyperthermia induces profound transitional spermatogenic suppression through increased germ cell apoptosis in adult cynomolgus monkeys (Macaca fascicularis). J Androl. 2002;23(6):799–805.

    PubMed  Google Scholar 

  172. Yamamoto CM, Sinha Hikim AP, Huynh PN, et al. Redistribution of Bax is an early step in an apoptotic pathway leading to germ cell death in rats, triggered by mild testicular hyperthermia. Biol Reprod. 2000; 63(6):1683–90.

    PubMed  CAS  Google Scholar 

  173. Vera Y, Rodriguez S, Castanares M, et al. Functional role of caspases in heat-induced testicular germ cell apoptosis. Biol Reprod. 2005;72(3):516–22.

    PubMed  CAS  Google Scholar 

  174. Kandeel FR, Swerdloff RS. Role of temperature in regulation of spermatogenesis and the use of heating as a method for contraception. Fertil Steril. 1988; 49(1):1–23.

    PubMed  CAS  Google Scholar 

  175. Zhang ZH, Jin X, Zhang XS, et al. Bcl-2 and Bax are involved in experimental cryptorchidism-induced testicular germ cell apoptosis in rhesus monkey. Contraception. 2003;68(4):297–301.

    PubMed  CAS  Google Scholar 

  176. Short RV. The testis: the witness of the mating system, the site of mutation and the engine of desire. Acta Paediatr Suppl. 1997;422:3–7.

    PubMed  CAS  Google Scholar 

  177. Bedford JM. Anatomical evidence for the epididymis as the prime mover in the evolution of the scrotum. Am J Anat. 1978;152(4):483–507.

    PubMed  CAS  Google Scholar 

  178. Thonneau P, Ducot B, Bujan L, Mieusset R, Spira A. Effect of male occupational heat exposure on time to pregnancy. Int J Androl. 1997;20(5):274–8.

    PubMed  CAS  Google Scholar 

  179. Thonneau P, Bujan L, Multigner L, Mieusset R. Occupational heat exposure and male fertility: a review. Hum Reprod. 1998;13(8):2122–5.

    PubMed  CAS  Google Scholar 

  180. Bonde JP. Semen quality in welders exposed to radiant heat. Br J Ind Med. 1992;49(1):5–10.

    PubMed  CAS  Google Scholar 

  181. Mur JM, Wild P, Rapp R, Vautrin JP, Coulon JP. Demographic evaluation of the fertility of aluminium industry workers: influence of exposure to heat and static magnetic fields. Hum Reprod. 1998;13(7): 2016–9.

    PubMed  CAS  Google Scholar 

  182. Figa-Talamanca I, Dell’Orco V, Pupi A, et al. Fertility and semen quality of workers exposed to high temperatures in the ceramics industry. Reprod Toxicol. 1992;6(6):517–23.

    PubMed  CAS  Google Scholar 

  183. Jung A, Schuppe HC, Schill WB. [Fever as etiology of temporary infertility in the man]. Hautarzt. 2001;52(12):1090–3.

    PubMed  CAS  Google Scholar 

  184. Bujan L, Daudin M, Charlet JP, Thonneau P, Mieusset R. Increase in scrotal temperature in car drivers. Hum Reprod. 2000;15(6):1355–7.

    PubMed  CAS  Google Scholar 

  185. Hjollund NH, Bonde JP, Jensen TK, Olsen J. Diurnal scrotal skin temperature and semen quality. The Danish First Pregnancy Planner Study Team. Int J Androl. 2000;23(5):309–18.

    PubMed  CAS  Google Scholar 

  186. Hjollund NH, Storgaard L, Ernst E, Bonde JP, Olsen J. The relation between daily activities and scrotal temperature. Reprod Toxicol. 2002;16(3):209–14.

    PubMed  CAS  Google Scholar 

  187. Magnusdottir EV, Thorsteinsson T, Thorsteinsdottir S, Heimisdottir M, Olafsdottir K. Persistent organochlorines, sedentary occupation, obesity and human male subfertility. Hum Reprod. 2005;20(1):208–15.

    PubMed  Google Scholar 

  188. Sas M, Szollosi J. Impaired spermiogenesis as a common finding among professional drivers. Arch Androl. 1979;3(1):57–60.

    PubMed  CAS  Google Scholar 

  189. Figa-Talamanca I, Cini C, Varricchio GC, et al. Effects of prolonged autovehicle driving on male reproduction function: a study among taxi drivers. Am J Ind Med. 1996;30(6):750–8.

    PubMed  CAS  Google Scholar 

  190. Rock J, Robinson D. Effect of induced intrascrotal hyperthermia on testicular function in man. Am J Obstet Gynecol. 1965;93(6):793–801.

    PubMed  CAS  Google Scholar 

  191. Yamaguchi M, Sakatoku J, Takihara H. The application of intrascrotal deep body temperature measurement for the noninvasive diagnosis of varicoceles. Fertil Steril. 1989;52(2):295–301.

    PubMed  CAS  Google Scholar 

  192. Jockenhovel F, Grawe A, Nieschlag E. A portable digital data recorder for long-term monitoring of scrotal temperatures. Fertil Steril. 1990;54(4):694–700.

    PubMed  CAS  Google Scholar 

  193. Parazzini F, Marchini M, Luchini L, Tozzi L, Mezzopane R, Fedele L. Tight underpants and trousers and risk of dyspermia. Int J Androl. 1995;18(3): 137–40.

    PubMed  CAS  Google Scholar 

  194. Mieusset R, Bujan L. Testicular heating and its possible contributions to male infertility: a review. Int J Androl. 1995;18(4):169–84.

    PubMed  CAS  Google Scholar 

  195. Zorgniotti A, Reiss H, Toth A, Sealfon A. Effect of clothing on scrotal temperature in normal men and patients with poor semen. Urology. 1982;19(2):176–8.

    PubMed  CAS  Google Scholar 

  196. Munkelwitz R, Gilbert BR. Are boxer shorts really better? A critical analysis of the role of underwear type in male subfertility. J Urol. 1998;160(4): 1329–33.

    PubMed  CAS  Google Scholar 

  197. Jung A, Leonhardt F, Schill WB, Schuppe HC. Influence of the type of undertrousers and physical activity on scrotal temperature. Hum Reprod. 2005;20(4):1022–7.

    PubMed  CAS  Google Scholar 

  198. Procope BJ. Effect of repeated increase of body temperature on human sperm cells. Int J Fertil. 1965; 10(4):333–9.

    PubMed  CAS  Google Scholar 

  199. Brown-Woodman PD, Post EJ, Gass GC, White IG. The effect of a single sauna exposure on spermatozoa. Arch Androl. 1984;12(1):9–15.

    PubMed  CAS  Google Scholar 

  200. Setchell BP. The Parkes Lecture. Heat and the testis. J Reprod Fertil. 1998;114(2):179–94.

    PubMed  CAS  Google Scholar 

  201. Banks S, King SA, Irvine DS, Saunders PT. Impact of a mild scrotal heat stress on DNA integrity in murine spermatozoa. Reproduction. 2005;129(4):505–14.

    PubMed  CAS  Google Scholar 

  202. Ishii T, Matsuki S, Iuchi Y, et al. Accelerated impairment of spermatogenic cells in SOD1-knockout mice under heat stress. Free Radic Res. 2005;39(7):697–705.

    PubMed  CAS  Google Scholar 

  203. Perez-Crespo M, Pintado B, Gutierrez-Adan A. Scrotal heat stress effects on sperm viability, sperm DNA integrity, and the offspring sex ratio in mice. Mol Reprod Dev. 2008;75(1):40–7.

    PubMed  CAS  Google Scholar 

  204. Carlsen E, Andersson AM, Petersen JH, Skakkebaek NE. History of febrile illness and variation in semen quality. Hum Reprod. 2003;18(10):2089–92.

    PubMed  Google Scholar 

  205. Evenson DP, Jost LK, Corzett M, Balhorn R. Characteristics of human sperm chromatin structure following an episode of influenza and high fever: a case study. J Androl. 2000;21(5):739–46.

    PubMed  CAS  Google Scholar 

  206. Stopczyk D, Gnitecki W, Buczynski A, Kowalski W, Buczynska M, Kroc A. [Effect of electromagnetic field produced by mobile phones on the activity of superoxide dismutase (SOD-1) – in vitro researches]. Ann Acad Med Stetin. 2005;51 Suppl 1:125–8.

    PubMed  Google Scholar 

  207. Dasdag S, Zulkuf Akdag M, Aksen F, et al. Whole body exposure of rats to microwaves emitted from a cell phone does not affect the testes. Bioelectromagnetics. 2003;24(3):182–8.

    PubMed  Google Scholar 

  208. Deepinder F, Makker K, Agarwal A. Cell phones and male infertility: dissecting the relationship. Reprod Biomed Online. 2007;15(3):266–70.

    PubMed  Google Scholar 

  209. Agarwal A, Deepinder F, Sharma RK, Ranga G, Li J. Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study. Fertil Steril. 2008;89(1):124–8.

    PubMed  Google Scholar 

  210. Kilgallon SJ, Simmons LW. Image content influences men’s semen quality. Biol Lett. 2005;1(3): 253–5.

    PubMed  Google Scholar 

  211. Fejes I, Zavaczki Z, Szollosi J, et al. Is there a relationship between cell phone use and semen quality? Arch Androl. 2005;51(5):385–93.

    PubMed  CAS  Google Scholar 

  212. Baste V, Riise T, Moen BE. Radiofrequency electromagnetic fields; male infertility and sex ratio of offspring. Eur J Epidemiol. 2008;23(5):369–77.

    PubMed  Google Scholar 

  213. Agarwal A, Desai NR, Makker K, et al. Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. Fertil Steril. 2009;92(4):1318–25.

    PubMed  Google Scholar 

  214. Friedman J, Kraus S, Hauptman Y, Schiff Y, Seger R. Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem J. 2007;405(3):559–68.

    PubMed  CAS  Google Scholar 

  215. Burch JB, Reif JS, Yost MG, Keefe TJ, Pitrat CA. Nocturnal excretion of a urinary melatonin metabolite among electric utility workers. Scand J Work Environ Health. 1998;24(3):183–9.

    PubMed  CAS  Google Scholar 

  216. Ozguner M, Koyu A, Cesur G, et al. Biological and morphological effects on the reproductive organ of rats after exposure to electromagnetic field. Saudi Med J. 2005;26(3):405–10.

    PubMed  Google Scholar 

  217. Ash P. The influence of radiation on fertility in man. Br J Radiol. 1980;53(628):271–8.

    PubMed  CAS  Google Scholar 

  218. Clifton DK, Bremner WJ. The effect of testicular x-irradiation on spermatogenesis in man. A comparison with the mouse. J Androl. 1983;4(6):387–92.

    PubMed  CAS  Google Scholar 

  219. Popescu HI, Lancranjan I. Spermatogenesis alterations during protracted irradiation in man. Health Phys. 1975;28(5):567–73.

    PubMed  CAS  Google Scholar 

  220. Cheburakov I, Cheburakova OP. [Disorders of spermatogenesis in people working at the clean-up of the Chernobyl nuclear power plant accident]. Radiats Biol Radioecol. 1993;33(6):771–4.

    Google Scholar 

  221. Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab. 2010;21(4):214–22.

    PubMed  CAS  Google Scholar 

  222. Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science. 1975;187(4173):226–32.

    PubMed  CAS  Google Scholar 

  223. Turner BM. Histone acetylation as an epigenetic determinant of long-term transcriptional competence. Cell Mol Life Sci. 1998;54(1):21–31.

    PubMed  CAS  Google Scholar 

  224. Wu Q, Ohsako S, Ishimura R, Suzuki JS, Tohyama C. Exposure of mouse preimplantation embryos to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) alters the methylation status of imprinted genes H19 and Igf2. Biol Reprod. 2004;70(6):1790–7.

    PubMed  CAS  Google Scholar 

  225. Waalkes MP, Liu J, Chen H, et al. Estrogen signaling in livers of male mice with hepatocellular carcinoma induced by exposure to arsenic in utero. J Natl Cancer Inst. 2004;96(6):466–74.

    PubMed  CAS  Google Scholar 

  226. Singh KP, DuMond Jr JW. Genetic and epigenetic changes induced by chronic low dose exposure to arsenic of mouse testicular Leydig cells. Int J Oncol. 2007;30(1):253–60.

    PubMed  CAS  Google Scholar 

  227. Perera F, Tang WY, Herbstman J, et al. Relation of DNA methylation of 5’-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS One. 2009;4(2):e4488.

    PubMed  Google Scholar 

  228. Yaoi T, Itoh K, Nakamura K, Ogi H, Fujiwara Y, Fushiki S. Genome-wide analysis of epigenomic alterations in fetal mouse forebrain after exposure to low doses of bisphenol A. Biochem Biophys Res Commun. 2008;376(3):563–7.

    PubMed  CAS  Google Scholar 

  229. Dolinoy DC, Huang D, Jirtle RL. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci U S A. 2007;104(32):13056–61.

    PubMed  CAS  Google Scholar 

  230. Ho SM, Tang WY, Belmonte de Frausto J, Prins GS. Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res. 2006;66(11):5624–32.

    PubMed  CAS  Google Scholar 

  231. Guerrero-Bosagna CM, Sabat P, Valdovinos FS, Valladares LE, Clark SJ. Epigenetic and phenotypic changes result from a continuous pre and post natal dietary exposure to phytoestrogens in an experimental population of mice. BMC Physiol. 2008; 8:17.

    PubMed  Google Scholar 

  232. Dolinoy DC, Weidman JR, Waterland RA, Jirtle RL. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect. 2006;114(4): 567–72.

    PubMed  CAS  Google Scholar 

  233. Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005; 308(5727):1466–9.

    PubMed  CAS  Google Scholar 

  234. Andersen HR, Schmidt IM, Grandjean P, et al. Impaired reproductive development in sons of women occupationally exposed to pesticides during pregnancy. Environ Health Perspect. 2008;116(4): 566–72.

    PubMed  Google Scholar 

  235. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev. 2007;8(4):253–62.

    CAS  Google Scholar 

  236. Anway MD, Rekow SS, Skinner MK. Transgenerational epigenetic programming of the embryonic testis transcriptome. Genomics. 2008; 91(1):30–40.

    PubMed  CAS  Google Scholar 

  237. Uzumcu M, Suzuki H, Skinner MK. Effect of the anti-androgenic endocrine disruptor vinclozolin on embryonic testis cord formation and postnatal testis development and function. Reprod Toxicol. 2004; 18(6):765–74.

    PubMed  CAS  Google Scholar 

  238. Takeda K, Tsukue N, Yoshida S. Endocrine-disrupting activity of chemicals in diesel exhaust and diesel exhaust particles. Environ Sci. 2004;11(1): 33–45.

    PubMed  CAS  Google Scholar 

  239. Kuriyama SN, Talsness CE, Grote K, Chahoud I. Developmental exposure to low dose PBDE 99: effects on male fertility and neurobehavior in rat offspring. Environ Health Perspect. 2005;113(2): 149–54.

    PubMed  CAS  Google Scholar 

  240. Howdeshell KL, Wilson VS, Furr J, et al. A mixture of five phthalate esters inhibits fetal testicular testosterone production in the Sprague-Dawley rat in a cumulative, dose-additive manner. Toxicol Sci. 2008;105(1):153–65.

    PubMed  CAS  Google Scholar 

  241. Danzo BJ. The effects of environmental hormones on reproduction. Cell Mol Life Sci. 1998;54(11): 1249–64.

    PubMed  CAS  Google Scholar 

  242. Moutsatsou P. The spectrum of phytoestrogens in nature: our knowledge is expanding. Hormones (Athens). 2007;6(3):173–93.

    Google Scholar 

  243. Kabuto H, Hasuike S, Minagawa N, Shishibori T. Effects of bisphenol A on the metabolisms of active oxygen species in mouse tissues. Environ Res. 2003; 93(1):31–5.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

du Plessis, S.S., Agarwal, A. (2011). Environmental Insults on Spermatogenesis. In: Racowsky, C., Schlegel, P., Fauser, B., Carrell, D. (eds) Biennial Review of Infertility. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8456-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8456-2_11

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-8455-5

  • Online ISBN: 978-1-4419-8456-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics