Skip to main content

The Use of Cholinesterases in Ecotoxicology

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 212

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 212))

Abstract

The need for reproducible and accurate biomarkers in Environmental Toxicology has led researchers to implement methods to evaluate the physiological effects caused by contaminants. Such methods are of particular biological importance and ecological interest if they allow the measurement of direct impairment of key endpoints in the test organisms or nontarget species. Neurotransmission impairment via cholinesterase ChE inhibition is the target of two important classes of modern ­pesticides, the ­organophosphates (OPs), and the carbamates (CBs). Because of their extensive use in modern agriculture, these two classes of compounds are widely employed. Metcalfe et al. (2002) estimated for the California Department of Food and Agriculture that the ban from current agricultural use of such compounds would cause the loss of 209,000 jobs and would result in a national economic loss of $17 billion. Therefore, it is not difficult to conclude that these chemical agents will continue to be used, despite the fact that humans and many nontarget organisms are exposed to them (spray drift from crop application, run off from agricultural fields that contaminate adjacent water bodies, residues in food, etc.) (Vermeire et al. 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aamodt S, Konestabo HS, Sverdrup LE, Gudbrandsen M, Reinecke SA, Reinecke AJ, Stenersen J (2007) Recovery of cholinesterase activity in the earthworm Eisenia fetida Savigny following exposure to chlorpyrifos. Environ Toxicol Chem 26(9): 1963–7.

    CAS  Google Scholar 

  • Andersen RA, Aune T, Barstad JAB (1978) Characteristics of cholinesterase of the earthworm Eisenia foetida. Compar Biochem Physiol Part C: Compar Pharmacol 61(1): 81–87.

    Google Scholar 

  • Arufe MI, Arellano JM, García L, Albendín G, Sarasquete C (2007) Cholinesterase activity in gilthead seabream (Sparus aurata) larvae: characterization and sensitivity to the organophosphate azinphosmethyl. Aquat Toxicol 84: 328–336.

    CAS  Google Scholar 

  • Bain D, Buttemer WA, Astheimer L, Fildes K, Hooper MJ (2004) Effects of sublethal fenitrothion ingestion on cholinesterase inhibition, standard metabolism, thermal preference, and ­prey-capture ability in the Australian central bearded dragon (Pogona vitticeps, Agamidae) Environ Toxicol Chem 23(1): 109–16.

    Google Scholar 

  • Barata C, Solayan A, Porte C (2004) Role of B-esterases in assessing toxicity of organophosphorus (chlorpyrifos, malathion) and carbamate (carbofuran) pesticides to Daphnia magna. Aquat Toxicol 66: 125–139.

    CAS  Google Scholar 

  • Bonacci S, Corsi I, Focardi S (2009) Cholinesterases in the Antarctic scallop Adamussium colbecki: Characterization and sensitivity to pollutants. Ecotoxicol Environ Saf 72: 1481–1488.

    CAS  Google Scholar 

  • Boschetti N, Brodbeck U (1996) The membrane anchor of mammalian brain acetylcholinesterase consists of a single glycosylated protein of 22 kDa. FEBS Letters 380: 133–136.

    CAS  Google Scholar 

  • Brown M, Davies IM, Moffat CF, Redshaw J, Craft JA (2004) Characterisation of choline esterases and their tissue and subcellular distribution in mussel (Mytilus edulis) Mar Environ Res 57: 155–169.

    Google Scholar 

  • Caselli F, Gastaldi L, Gambi N, Fabbri E (2006) In vitro characterization of cholinesterases in the earthworm Eisenia andrei. Comp Biochem Physiol, Part C 143: 416–421.

    Google Scholar 

  • Chebbi SG, David M (2009) Neurobehavioral responses of the freshwater teleost, Cyprinus carpio (Linnaeus.) under quinalphos intoxication. Biotechnol Animal Husband 25(3-4): 241–249.

    Google Scholar 

  • Choi RCY, Yama SCY, Hui B, Wan DCC, Tsim KWK (1998) Over-expression of acetylcholinesterase stimulates the expression of agrin in NG108–15 cells. Neurosci Lett 248: 17–20.

    Google Scholar 

  • Chuiko GM (2000) Comparative study of acetylcholinesterase and butyrylcholinesterase in brain and serum of several freshwater fish: specific activities and in vitro inhibition by DDVP, an organophosphorus pesticide. Compar Biochem Physiol, part C Toxicol Pharmacol 127(3): 233–42.

    CAS  Google Scholar 

  • Corsi I, Bonacci S, Santovito G, Chiantore M, Castagnolo L, Focardi S (2004) Cholinesterase activities in the Antartic scallop Adamussium colbecki: tissue expression and effect of ZnCl2 exposure. Mar Environ Res 58: 401–406.

    Google Scholar 

  • Cunha I, Mangas-Ramirez E, Guilhermino L (2007) Effects of copper and cadmium on cholinesterase and glutathione S-transferase activities of two marine gastropods (Monodonta lineata and Nucella lapillus). Compar Biochem Physiol, Part C 145: 648–657.

    CAS  Google Scholar 

  • Dahm KCS, Rückert C, Tonial EM, Bonan CD (2006) In vitro exposure of heavy metals on nucleotidase and cholinesterase activities from the digestive gland of Helix aspersa. Compar Biochem Physiol, Part C 143: 316–320.

    Google Scholar 

  • Dauberschmidt C, Dietrich DR, Christian Schlatter C (1997) Esterases in the zebra mussel Dreissena polymorpha: activities, inhibition, and binding to organophosphates. Aquat Toxicol 37(4): 295–305.

    CAS  Google Scholar 

  • Denoyelle R, Rault M, Mazzia C, Mascle O, Capowiez Y (2007) Cholinesterase activity as a biomarker of pesticide exposure in Allolobophora chlorotica earthworms living in apple orchards under different management strategies. Environ Toxicol Chem 26(12): 2644–9.

    CAS  Google Scholar 

  • Deschênes-Furry J, Bélanger G, Perrone-Bizzozero N, Jasmin BJ (2003) Post-transcriptional Regulation of Acetylcholinesterase mRNAs in Nerve Growth Factor-treated PC12 Cells by the RNA-binding Protein HuD. J Biolog Chem 278(8): 5710–5717.

    Google Scholar 

  • Duquesne S (2006) Effects of an organophosphate on Daphnia magna at suborganismal and organismal levels: Implications for population dynamics. Ecotoxicol Environ Saf 65: 145–150.

    CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7: 88–95.

    CAS  Google Scholar 

  • Escartín E, Porte C (1996) Acetylcholinesterase Inhibition in the Crayfish Procambarus clarkii Exposed to Fenitrothion. Ecotoxicolo Environ Saf 34: 160–164.

    Google Scholar 

  • Eto M (1984) Organophosphorus Pesticides: Organic and Biological Chemistry. Ohio: CRC Press, Inc. 1974.

    Google Scholar 

  • Falugi C, Amaroli A, Evangelisti V, Viarengo A, Delmonte Corrado MU (2002) Cholinesterase activity and effects of its inhibition by neurotoxic drugs in Dictyostelium discoideum. Chemosphere 48: 407–414.

    CAS  Google Scholar 

  • Ferrari A, Venturino A, Pechén de D’Angelo AM (2007) Muscular and brain cholinesterase sensitivities to azinphos methyl and carbaryl in the juvenile rainbow trout Oncorhynchus mykiss. Compar Biochem Physiol, Part C 146: 308–313.

    Google Scholar 

  • Forget J, Livet S, Leboulenger F (2002) Partial purification and characterization of ­acetylcholinesterase (AChE) from the estuarine copepod Eurytemora affinis (Poppe). Compar Biochem Physiol Part C 132: 85–92.

    Google Scholar 

  • Forget J, Bocquené G (1999) Partial purification and enzymatic characterization of acetylcholinesterase from the intertidal marine copepod Tigriopus brevicornis. Compar Biochem Physiol Part B 123: 345–350.

    Google Scholar 

  • Fournier D, Bride JM, Karch F, Bergé JB (1988) Acetylcholinesterase from Drosophila melanogaster – Identification of two subunits encoded by the same gene. FEBS Letters 238(2): 333–337.

    CAS  Google Scholar 

  • Frasco MF, Fournier D, Carvalho F, Guilhermino L (2006) Cholinesterase from the common prawn (Palaemon serratus) eyes: Catalytic properties and sensitivity to organophosphate and carbamate compounds. Aquat Toxicol 77: 412–421.

    CAS  Google Scholar 

  • Frasco MF, Fournier D, Carvalho F, Guilhermino L (2005) Do metals inhibit acetylcholinesterase (AChE)? Implementation of assay conditions for the use of AChE activity as a biomarker of metal toxicity. Biomarkers 10(5): 360–375.

    CAS  Google Scholar 

  • Fulton MH, Key PB (2001) Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environ Toxicol Chem 20: 37–45.

    CAS  Google Scholar 

  • Gambi N, Pasteris A, Fabbri E (2007) Acetylcholinesterase activity in the earthworm Eisenia andrei at different conditions of carbaryl exposure. Compar Biochem Physiol, Part C 145: 678–685.

    Google Scholar 

  • Gao JR, Zhu KY (2002) Increased expression of an acetylcholinesterase gene may confer organophosphate resistance in the greenbug, Schizaphis graminum (Homoptera: Aphididae). Pesticide Biochem Physiol 73: 164–173.

    CAS  Google Scholar 

  • Garcia LM, Castro B, Ribeiro R, Guilhermino L (2000) Characterization of cholinesterase from guppy (Poecilia reticulata) muscle and its in vitro inhibition by environmental contaminants. Biomarkers 5(4): 274–284.

    CAS  Google Scholar 

  • Giacobini E (2004) Cholinesterase inhibitors: new roles and therapeutic alternatives. Pharmacological Res 50: 433–440.

    CAS  Google Scholar 

  • Gonçalves A, Padrão J, Gonçalves F, Nunes B (2010) In vivo acute effects of several pharmaceutical drugs (diazepam, clofibrate, clofibric acid) and detergents (sodium dodecyl-sulphate and benzalkonium chloride) on cholinesterases from Gambusia holbrooki. Fresenius Environ Bull 19(4): 628–634.

    Google Scholar 

  • Greene LA, Rukenstein A (1981) Regulation of Acetylcholinesterase Activity by Nerve Growth Factor. J Biolog Chem 256(12): 6363–6367.

    CAS  Google Scholar 

  • Guilhermino L, Lacerda MN, Nogueira AJA, Soares AMVM (2000) In vitro and in vivo inhibition of Daphnia magna acetylcholinesterase by surfactant agents: possible implications for contamination biomonitoring. Sci Tot Env 247: 137–141.

    CAS  Google Scholar 

  • Hai DQ, Ilona Varga Sz, Matkovics B (1997) Organophosphate effects on antioxidant system of carp (Cyprinus carpio) and catfish (Ictalarus nebulosus). Compar Bioch Physiol 117C(1): 83–88.

    CAS  Google Scholar 

  • Iko WM, Archuleta AS, Knopf FL (2003) Plasma cholinesterase levels of mountain plovers (Charadrius montanus) wintering in central California, USA. Environ Toxicol Chem 22(1): 119–25.

    CAS  Google Scholar 

  • Jbilo O, Toutant JP, Vatsis KP, Chatonnet A, Lockridge O (1994) Promoter and Transcription Start Site of Human and Rabbit Butyrylcholinesterase Genes. J Biolog Chem 269(33): 20829–20837.

    CAS  Google Scholar 

  • Jokanovic M (2001) Biotransformation of organophosphorus compounds. Toxicology 166: 139–160.

    CAS  Google Scholar 

  • Jung JH, Addison RF, Shim WJ (2007) Characterization of cholinesterases in marbled sole, Limanda yokohamae, and their inhibition in vitro by the fungicide iprobenfos. Mar Environl Res 63: 471–478

    CAS  Google Scholar 

  • Key PB, Fulton MH (2002) Characterization of cholinesterase activity in tissues of the grass shrimp (Palaemonetes pugio). Pesticide Biochem Physiol 72: 186–192.

    CAS  Google Scholar 

  • Kitz RJ, Braswell LM, Ginsburg S (1970) On the question: is acetylcholinesterase an allosteric protein? Molecular Pharmacol 6: 108–121.

    CAS  Google Scholar 

  • Klumpp D, Humphrey C, King SC (2007) Biomarker responses in coral trout (Plectropomus leopardus) as an indicator of exposure to contaminants in a coral reef environment. Austral J Ecotoxicol 13: 9–17.

    CAS  Google Scholar 

  • Kopecka J, Rybakowas A, Barsiené J, Pempkowiak J (2004) AChE levels in mussels and fish collected off Lithuania and Poland (southern Baltic). Oceanologia 46(3): 405–418.

    Google Scholar 

  • Kozlovskaya VI, Mayer FL, Menzikova OV, Chuyko GM (1993) Cholinesterases of aquatic animals. Rev Environ Contam Toxicol 132: 117–142.

    CAS  Google Scholar 

  • Kristoff G, Guerrero NR, Cochón AC (2010) Inhibition of cholinesterases and carboxylesterases of two invertebrate species, Biomphalaria glabrata and Lumbriculus variegatus, by the carbamate pesticide carbaryl. Aquat Toxicol 96(2): 115–23.

    CAS  Google Scholar 

  • Laguerre C, Sanchez-Hernandez JC, Köhler HR, Triebskorn R, Capowiez Y, Rault M, Mazzia C (2009) B-type esterases in the snail Xeropicta derbentina: An enzymological analysis to evaluate their use as biomarkers of pesticide exposure. Environ Pollut 157: 199–207.

    CAS  Google Scholar 

  • Leticia AG, Gerardo GB (2008) Determination of esterase activity and characterization of cholinesterases in the reef fish Haemulon plumieri. Ecotoxicol Environm Saf 71: 787–797.

    CAS  Google Scholar 

  • Li M-H (2008) Effects of nonionic and ionic surfactants on survival, oxidative stress, and cholinesterase activity of planarian. Chemosphere 70: 1796–1803

    CAS  Google Scholar 

  • MacGregor JA, Plunkett LM, Youngren SH, Manley A, Plunkett JB, Starr TB (2005) Humans appear no more sensitive than laboratory animals to the inhibition of red blood cell cholinesterase by dichlorvos. Regulatory Toxicol Pharmacol 43: 150–167.

    CAS  Google Scholar 

  • Magnotti RA, Zaino JP, McConnell RS (1994) Pesticide-sensitive fish muscle cholinesterases. Compar Biochem Physiol Part C: Pharmaco, Toxicol Endocrinol 108(2): 187–194.

    Google Scholar 

  • Mack A, Robitzki A (2000) The key role of butyrylcholinesterase during neurogenesis and neural disorders: an antisense-5′butyrylcholinesterase-DNA study. Progress in Neurobiol 60: 607–628.

    CAS  Google Scholar 

  • Malany S, Baker N, Verweyst N, Medhekar R, Quinn DM, Velan B, Kronman C, Shafferman A (1999) Theoretical and experimental investigations of electrostatic effects on acetylcholinesterase catalysis and inhibition. Chemico-Biolog Interact 119–120: 99–110.

    Google Scholar 

  • Massoulié J, Perrier N, Noureddine H, Liang D, Bon S (2008) Old and new questions about cholinesterases. Chemico-Biolog Interact 175: 30–44

    Google Scholar 

  • Massoulié J, Bon S (1982) The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Ann Rev Neurosci 5: 57–106.

    Google Scholar 

  • Maul JD, Farris JL (2005) Monitoring exposure of northern cardinals, Cardinalis cardinalis, to cholinesterase-inhibiting pesticides: enzyme activity, reactivations, and indicators of environmental stress. Environ Toxicol Chem 24(7): 1721–30.

    CAS  Google Scholar 

  • McInnes PF, Andersen DE, Hoff DJ, Hooper MJ, Kinkell LL (1996) Monitoring exposure of nestling songbirds to agricultural application of an organophosphorus insecticide using cholinesterase activity. Environ Toxicol Chem 15(4): 544–552.

    CAS  Google Scholar 

  • Melo JB, Agostinho P, Oliveira CR (2003) Involvement of oxidative stress in the enhancement of acetylcholinesterase activity induced by amyloid beta-peptide. Neurosci Res 45: 117–127.

    CAS  Google Scholar 

  • Metcalfe M, McWilliams B, Hueth B, Van Steenwyk R, Sunding D, Swoboda A, Zilberman D (2002) Report: The Economic Importance of Organophosphates in California Agriculture. California Department of Food and Agriculture.

    Google Scholar 

  • Monteiro M, Quintaneiro C, Morgado F, Soares AMVM, Guilhermino L (2005) Characterization of the cholinesterases present in head tissues of the estuarine fish Pomatoschistus microps: Application to biomonitoring. Ecotoxicol Environ Saf 62: 341–347

    CAS  Google Scholar 

  • Mora P, Fournier D, Narbonne JF (1999) Cholinesterases from the marine mussels Mytilus galloprovincialis Lmk. and M. edulis L. and from the freshwater bivalve Corbicula fluminea Müller. Compar Biochem Physiol Part C 122: 353–361.

    CAS  Google Scholar 

  • Nunes B, Carvalho F, Guilhermino L (2005) Characterization and use of the total head soluble cholinesterases from mosquitofish (Gambusia holbrooki) for screening of anticholinesterase activity. J Enzym Inhibit Medic Chem 20(4): 369–376.

    CAS  Google Scholar 

  • Padilla S (1995) Regulatory and research issues related to cholinesterase inhibition. Toxicology 102: 215–220.

    CAS  Google Scholar 

  • Panda S, Sahu SK (2004) Recovery of acetylcholine esterase activity of Drawida willsi (Oligochaeta) following application of three pesticides to soil. Chemosphere 55: 283–290.

    CAS  Google Scholar 

  • Parsons KC, Matz AC, Hooper MJ, Pokras MA (1999) Monitoring wading bird exposure to agricultural chemicals using serum cholinesterase activity. Environ Toxicol Chem 19(5): 1317–1323.

    Google Scholar 

  • Pham TPT, Cho CW, Yun YS (2010) Environmental fate and toxicity of ionic liquids: A review. Water Res 44: 352–372.

    CAS  Google Scholar 

  • Principato GB, Contenti S, Talesa V, Mangiabene C, Pascolini R, Rosi G (1989) Propionylcholinesterase from Allolobophora caliginosa. Compar Biochem Physiol Part C: Compar Pharmacol 94(1): 23–27.

    Google Scholar 

  • Principato GB, Ambrosini MV, Menghini A, Giovannini E, Dell’Agata M (1978) Multiple forms of acetylcholinesterase in Allolobophora caliginosa: Purification and partial characterization. Compar Biochem Physiol Part C: Compar Pharmacol 61(1): 147–151.

    Google Scholar 

  • Rahman MF, Siddiqui MKJ, Jamil K (2000) Inhibition of Acetylcholinesterase and Different ATPases by a Novel Phosphorothionate (RPR-II) in Rat Brain. Ecotoxicol Environ Saf 47: 125–129.

    CAS  Google Scholar 

  • Rault M, Mazzia C, Capowiez Y (2007) Tissue distribution and characterization of cholinesterase activity in six earthworm species. Compar Biochem Physiol, Part B 147: 340–346.

    Google Scholar 

  • Rocío Marcos M, Sánchez-Yague J, Hernéndez-Hernández A, Llanillo M (1998) Amphiphilic and hydrophilic forms of acetylcholinesterase from sheep platelets. Biochimica et Biophysica Acta 1415: 163–173.

    Google Scholar 

  • Rodríguez-Castellano L, Sanchez-Hernandez JC (2007a) Earthworm biomarkers of pesticide contamination: Current status and perspectives. J Pesticide Sci 32: 360–371.

    Google Scholar 

  • Rodríguez-Castellanos L, Sanchez-Hernandez JC (2007b) Chemical Reactivation and Aging Kinetics of Organophosphorus-Inhibited Cholinesterases from Two Earthworms Species. Environ Toxicol Chem 26(9): 1992–2000.

    Google Scholar 

  • Rodríguez-Fuentes G, Armstrong J, Schlenk D (2008) Characterization of muscle cholinesterases from two demersal flatfish collected near a municipal wastewater outfall in Southern California. Ecotoxicol Environ Saf 69: 466–471.

    Google Scholar 

  • Rodríguez-Fuentes G, Gold-Bouchot G (2004) Characterization of cholinesterase activity from different tissues of Nile tilapia (Oreochromus niloticus). Mar Environ Res 58: 505–509.

    Google Scholar 

  • Romani R, Antognelli C, Baldracchini F, De Santis A, Isani G, Giovannini E, Rosi G (2003) Increased acetylcholinesterase activities in specimens of Sparus auratus exposed to sublethal copper concentrations. Chemico-Biological Interact 145: 321–329.

    CAS  Google Scholar 

  • Sanchez JC, Fossi MC, Focardi S (1997) Serum “B” Esterases as a Nondestructive Biomarker for Monitoring the Exposure of Reptiles to Organophosphorus Insecticides. Ecotoxicol Environ Saf 37: 45–52.

    Google Scholar 

  • Sánchez-Fortún S, Barahona V (2001) The use of carbamates, atropine, and 2-pyridine aldoxime methoiodide in the protection of Artemia salina against poisoning by carbophenothion. Environ Toxicol Chem 20(9): 2008–2013.

    Google Scholar 

  • Sánchez-Hernandez JC (2007) Ecotoxicological perspectives of B-esterases in the assessment of pesticide contamination. In: Plattenberg RH (ed.) Environmental Pollution: New Research. Nova Science Publishers, New York, USA, pp. 1–45.

    Google Scholar 

  • Sánchez-Hernández JC, Carbonell R, Henríquez Pérez A, Montealegre M, Gómez L (2004) Inhibition of plasma butyrylcholinesterase activity in the lizard Gallotia galloti palmae by pesticides: a field study. Environ Pollut 132: 479–488.

    Google Scholar 

  • Sanchez-Hernandez JC (2003) Evaluating reptile exposure to cholinesterase-inhibiting agrochemicals by serum butyrylcholinesterase activity. Environ Toxicol Chem 22(2): 296–301.

    CAS  Google Scholar 

  • Sanchez-Hernandez JC, Sanchez BM (2002) Lizard cholinesterases as biomarkers of pesticide exposure: enzymological characterization. Environ Toxicol Chem 21(11): 2319–25.

    CAS  Google Scholar 

  • Sánchez-Hernandez JC (2001) Wildlife exposure to organophosphorus insecticides. Rev Environ Contam Toxicol 172: 21–63.

    Google Scholar 

  • Sánchez-Hernandez JC, Walker CH (2000) In vitro and in vivo cholinesterase inhibition in Lacertides by phosphonate- and phosphorothioate-type organophosphates. Pesticide Biochem Physiol 67: 1–12.

    Google Scholar 

  • Sancho E, Fernandez-Vega C, Sanchez M, Ferrando MD, Andreu-Moliner E (2000) Alterations on AChE Activity of the Fish Anguilla anguilla as Response to Herbicide-Contaminated Water. Ecotoxicol Environ Saf 46: 57–63.

    CAS  Google Scholar 

  • Sancho E, Ferrando MD, Andreu E (1998) In vivo inhibition of AChE activity in the European eel Anguilla anguilla exposed to technical grade fenitrothion. Comparat Biochem Physiol Part C 120: 389–395.

    CAS  Google Scholar 

  • Sandahl JF, Baldwin DH, Jenkins JJ, Scholz NL (2005) Comparative thresholds for acetylcholinesterase inhibition and behavioral impairment in Coho salmon exposed to chlorpyrifos. Environ Toxicol Chem 24(1): 136–145.

    CAS  Google Scholar 

  • Schmidt SR (2003) Reptile Cholinesterase Characterization and Use in Monitoring Anti-cholinesterases. Thesis in Environmental Toxicology. Texas Tech University.

    Google Scholar 

  • Schmidt GH, Ibrahim NMM (1994) Heavy metal content (Hg2+, Cd2+, Pb2+) in various body parts: Its impact on cholinesterase activity and binding glycoproteins in the grasshopper Aiolopus thalassinus adults. Ecotoxicol Environ Saf 29(2): 148–164.

    CAS  Google Scholar 

  • Scott-Fordsmand JJ, Weeks JM (2000) Biomarkers in earthworms. Rev Environ Contam Toxicol 165:117–59.

    CAS  Google Scholar 

  • Schweitzer ES (1993) Regulated and constitutive secretion of distinct molecular forms of acetylcholinesterase from PC12 cells. J Cell Sci 106: 731–740.

    CAS  Google Scholar 

  • Small DH, Michaelson S, Sberna G (1996) Non-classical actions of cholinesterases: role in cellular differentiation, tumorigenesis and Alzheimer’s disease. Neurochem Internat 5/6: 453–483.

    Google Scholar 

  • Solé M, Lobera G, Lima D, Reis-Henriques MA, Santos MM (2008) Esterases activities and lipid peroxidation levels in muscle tissue of the shanny Lipophrys pholis along several sites from the Portuguese Coast. Mar Pollut Bull 56: 999–1007.

    Google Scholar 

  • Somnuek C, Cheevaporn V, Saengkul C and Beamish FWH (2007) Variability in Acetylcholinesterase upon Exposure to Chlorpyrifos and Carbaryl in Hybrid Catfish. ScienceAsia 33: 301–305.

    CAS  Google Scholar 

  • Stefano B, Ilaria C, Silvano F (2008) Cholinesterase activities in the scallop Pecten jacobaeus: Characterization and effects of exposure to aquatic contaminants. Sci Tot Env 392: 99–109.

    CAS  Google Scholar 

  • Stenersen J, Brekke E, Engelstad F (1992) Earthworms for toxicity testing; species differences in response towards cholinesterase inhibiting insecticides. Soil Biol Biochem 24(12): 1761–1764.

    CAS  Google Scholar 

  • Stenersen J (1980) Esterases of earthworms. Part I: Characterisation of the cholinesterases in Eisenia foetida (Savigny) by substrates and inhibitors. Compar Biochem Physiol Part C: Compar Pharmacol 66(1): 37–44.

    Google Scholar 

  • Sturm A, Silva de Assis HC, Hansen PD (1999a) Cholinesterases of marine teleost fish: enzymological characterization and potential use in the monitoring of neurotoxic contamination. Mar Environ Res 47: 389–398.

    CAS  Google Scholar 

  • Sturm A, Wogram J, Hansen PD, Liess M (1999b) Potential use of cholinesterase in monitoring low levels of organophosphates in small streams: natural variability in three-spined stickleback (Gasterosteus aculeatus) and relation to pollution. Environ Toxicol Chem 18(2): 194–200.

    CAS  Google Scholar 

  • Talesa V, Romani R, Antognelli C, Giovannini E, Rosi G (2001) Soluble and membrane-bound acetylcholinesterases in Mytilus galloprovincialis (Pelecypoda: Filibranchia) from the northern Adriatic sea. Chemico-Biological Interact 134: 151–166.

    CAS  Google Scholar 

  • Talesa V, Romani R, Rosi G, Giovannini E (1997) Acetylcholinesterase in Spirographis spallanzanii (Polychaeta: Sedentaria): Presence of two dimeric membrane-bound forms. Biochimie 79: 397–405.

    CAS  Google Scholar 

  • Talesa V, Grauso M, Giovannini E, Rosi G, Toutant JP (1995a) Acetylcholinesterase in tentacles in Octopus vulgaris (cephalopoda). Histochemical localization and characterization of a specific high salt-soluble and heparin-soluble fraction of globular forms. Neurochem Internat 27(2): 201–211.

    CAS  Google Scholar 

  • Talesa V, Grauso M, Giovannini E, Rosi G, Toutant JP (1995b) Solubilization, molecular forms, purification and substrate specificity of two acetylcholinesterases in the medicinal leech (Hirudo medicinalis). Biochem J 306: 687–692.

    CAS  Google Scholar 

  • Tsim KWK (1998) The signaling pathway of calcitonin gene-related peptide-induced ­acetylcholinesterase expression in muscle is mediated by cyclic AMP. Abstract book of the Xth International Symposium on Cholinergic Mechanisms, Arcachon, France September 1–5, 1998: 109.

    Google Scholar 

  • Valbonesi P, Sartor G, Fabbri E (2003) Characterization of cholinesterase activity in three bivalves inhabiting the North Adriatic sea and their possible use as sentinel organisms for biosurveillance programmes. Sci To Environ 312: 79–88.

    CAS  Google Scholar 

  • Varó I, Navarro JC, Amat F, Guilhermino L (2003) Effect of dichlorvos on cholinesterase activity of the European sea bass (Dicentrarchus labrax). Pesticide Biochem Physiol 75: 61–72.

    Google Scholar 

  • Varó I, Navarro JC, Amat F, Guilhermino L(2002) Characterisation of cholinesterases and evaluation of the inhibitory potential of chlorpyrifos and dichlorvos to Artemia salina and Artemia parthenogenetica. Chemosphere 48: 563–569.

    Google Scholar 

  • Vermeire T, McPhail R, Waters M (2001) D. Organophosphorous pesticides in the environment. World Health Organization. IV. Meeting Report of the International Workshop on Approaches to Integrated Risk Assessment: 1–18.

    Google Scholar 

  • Wan DCC, Choi RCY, Siow NL, Tsim KWK (2000) The promoter of human acetylcholinesterase is activated by a cyclic adenosine 3′, 5′-monophosphate-dependent pathway in cultured NG108-15 neuroblastoma cells. Neurosc Lett 288: 81–85.

    CAS  Google Scholar 

  • Wang J, Grisle S, Schlenk D (2001) Effects of Salinity on Aldicarb Toxicity in Juvenile Rainbow Trout (Oncorhynchus mykiss) and Striped Bass (Morone saxatilis  ×  chrysops) Toxicolog Sci 64: 200–207.

    Google Scholar 

  • Wogram J, Sturm A, Segner H, Liesse M (2001) Effects of parathion on acetylcholinesterase, butyrilcholinesterase, and carboxylesterase in three-spined stickleback (Gasterosteus aculeatues) following short-term exposure. Environ Toxicol Chem 20(7): 1528–1531.

    CAS  Google Scholar 

  • Xuereb B, Noury P, Felten V, Garric J, Geffard O (2007) Cholinesterase activity in Gammarus pulex (Crustacea Amphipoda): characterization and effects of chlorpyrifos. Toxicology 236: 178–189.

    CAS  Google Scholar 

  • Yang L, He HY, Zhang XJ (2002) Increased expression of intranuclear AChE involved in apoptosis of SK-N-SH cells. Neurosci Res 42: 261–268.

    CAS  Google Scholar 

  • Zinkl JG, Lochkart WL, Kenny SA, Ward FJ (1991) The effects of cholinesterase inhibiting insecticides on fish. In: Cholinesterase-Inhibiting Insecticides. Their Impact on wildlife and the Environment. Mineau P (ed), pp. 234–243. Elsevier, New York.

    Google Scholar 

Download references

Acknowledgments

The present work was funded by projects “BiOtoMetal” (PTDC/AMB/70431/2006). We would like to acknowledge the contribution of Sérgio Barreira, for his most appreciated scientific comments and chemical expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Nunes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nunes, B. (2011). The Use of Cholinesterases in Ecotoxicology. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology Volume 212. Reviews of Environmental Contamination and Toxicology, vol 212. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8453-1_2

Download citation

Publish with us

Policies and ethics