Skip to main content

Future Perspective and Significance of Cartilage Imaging and Quantification

  • Chapter
  • First Online:
Book cover Cartilage Imaging

Abstract

Cartilage is one of the most significant structures for joint function and is compromised in degenerative and traumatic joint disease. MR imaging has been established as the standard cartilage imaging modality, and techniques have been developed and optimized to visualize cartilage morphology, to quantify its volume and to analyze its biochemical composition. The substantial amount of research that is invested in the development of these morphologic and quantitative imaging techniques is geared at preventing and treating traumatic and degenerative cartilage disease at the earliest stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Felson DT. An update on the pathogenesis and epidemiology of osteoarthritis. Radiol Clin North Am. 2004;42(1):1–9. v.

    Article  PubMed  Google Scholar 

  2. Niu J, Zhang YQ, Torner J, Nevitt M, Lewis CE, Aliabadi P, et al. Is obesity a risk factor for progressive radiographic knee osteoarthritis? Arthritis Rheum. 2009;61(3):329–35.

    Article  PubMed  CAS  Google Scholar 

  3. Major NM, Helms CA. MR imaging of the knee: findings in asymptomatic collegiate basketball players. AJR Am J Roentgenol. 2002;179(3):641–4.

    PubMed  Google Scholar 

  4. Stahl R, Luke A, Ma CB, Krug R, Steinbach L, Majumdar S, et al. Prevalence of pathologic findings in asymptomatic knees of ­marathon runners before and after a competition in comparison with physically active subjects – a 3.0 T magnetic resonance imaging study. Skeletal Radiol. 2008;37(7):627–38.

    Article  PubMed  Google Scholar 

  5. Stehling C, Lane NE, Nevitt MC, Lynch J, McCulloch CE, Link TM. Subjects with higher physical activity levels have more severe focal knee lesions diagnosed with 3T MRI: analysis of a non-­symptomatic cohort of the osteoarthritis initiative. Osteoarthritis Cartilage. 2010;18(6):776–86.

    Article  PubMed  CAS  Google Scholar 

  6. Stehling C, Liebl H, Krug R, Lane NE, Nevitt MC, Lynch J, et al. Patellar cartilage: T2 values and morphologic abnormalities at 3.0-T MR imaging in relation to physical activity in asymptomatic subjects from the osteoarthritis initiative. Radiology. 2010;254(2):509–20.

    Article  PubMed  Google Scholar 

  7. Vignon E, Valat JP, Rossignol M, Avouac B, Rozenberg S, Thoumie P, et al. Osteoarthritis of the knee and hip and activity: a systematic international review and synthesis (OASIS). Joint Bone Spine. 2006;73(4):442–55.

    Article  PubMed  Google Scholar 

  8. Gilchrist J, Mandelbaum BR, Melancon H, Ryan GW, Silvers HJ, Griffin LY, et al. A randomized controlled trial to prevent noncontact anterior cruciate ligament injury in female collegiate soccer players. Am J Sports Med. 2008;36(8):1476–83.

    Article  PubMed  Google Scholar 

  9. Lim BO, Lee YS, Kim JG, An KO, Yoo J, Kwon YH. Effects of sports injury prevention training on the biomechanical risk factors of anterior cruciate ligament injury in high school female basketball players. Am J Sports Med. 2009;37(9):1728–34.

    Article  PubMed  Google Scholar 

  10. Mandelbaum BR, Silvers HJ, Watanabe DS, Knarr JF, Thomas SD, Griffin LY, et al. Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament ­injuries in female athletes: 2-year follow-up. Am J Sports Med. 2005;33(7):1003–10.

    Article  PubMed  Google Scholar 

  11. Silvers HJ, Mandelbaum BR. Prevention of anterior cruciate ligament injury in the female athlete. Br J Sports Med. 2007;41 Suppl 1:i52–9.

    Article  PubMed  Google Scholar 

  12. Olsen L, Scanlan A, MacKay M, Babul S, Reid D, Clark M, et al. Strategies for prevention of soccer related injuries: a systematic review. Br J Sports Med. 2004;38(1):89–94.

    Article  PubMed  CAS  Google Scholar 

  13. Abramson SB, Attur M, Yazici Y. Prospects for disease modification in osteoarthritis. Nat Clin Pract Rheumatol. 2006;2(6):304–12.

    Article  PubMed  CAS  Google Scholar 

  14. Raynauld JP, Martel-Pelletier J, Bias P, Laufer S, Haraoui B, Choquette D, et al. Protective effects of licofelone, a 5-lipoxygenase and cyclo-oxygenase inhibitor, versus naproxen on cartilage loss in knee osteoarthritis: a first multicentre clinical trial using quantitative MRI. Ann Rheum Dis. 2009;68(6):938–47.

    Article  PubMed  CAS  Google Scholar 

  15. Kahan A, Uebelhart D, De Vathaire F, Delmas PD, Reginster JY. Long-term effects of chondroitins 4 and 6 sulfate on knee osteoarthritis: the study on osteoarthritis progression prevention, a two-year, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2009;60(2):524–33.

    Article  PubMed  CAS  Google Scholar 

  16. Clegg DO, Reda DJ, Harris CL, Klein MA, O’Dell JR, Hooper MM, et al. Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. N Engl J Med. 2006;354(8):795–808.

    Article  PubMed  CAS  Google Scholar 

  17. Sawitzke AD, Shi H, Finco MF, Dunlop DD, Bingham 3rd CO, Harris CL, et al. The effect of glucosamine and/or chondroitin sulfate on the progression of knee osteoarthritis: a report from the glucosamine/chondroitin arthritis intervention trial. Arthritis Rheum. 2008;58(10):3183–91.

    Article  PubMed  CAS  Google Scholar 

  18. Sawitzke AD, Shi H, Finco MF, Dunlop DD, Harris CL, Singer NG, et al. Clinical efficacy and safety of glucosamine, chondroitin sulphate, their combination, celecoxib or placebo taken to treat osteoarthritis of the knee: 2-year results from GAIT. Ann Rheum Dis. 2010;69(8):1459–64.

    Article  PubMed  CAS  Google Scholar 

  19. Richter W. Cell-based cartilage repair: illusion or solution for osteoarthritis. Curr Opin Rheumatol. 2007;19(5):451–6.

    PubMed  CAS  Google Scholar 

  20. Bedi A, Feeley BT, Williams 3rd RJ. Management of articular cartilage defects of the knee. J Bone Joint Surg Am. 2010;92(4):994–1009.

    Article  PubMed  Google Scholar 

  21. Gudas R, Stankevicius E, Monastyreckiene E, Pranys D, Kalesinskas RJ. Osteochondral autologous transplantation versus microfracture for the treatment of articular cartilage defects in the knee joint in athletes. Knee Surg Sports Traumatol Arthrosc. 2006;14(9):834–42.

    Article  PubMed  Google Scholar 

  22. Zaslav K, Cole B, Brewster R, DeBerardino T, Farr J, Fowler P, et al. A prospective study of autologous chondrocyte implantation in patients with failed prior treatment for articular cartilage defect of the knee: results of the Study of the Treatment of Articular Repair (STAR) Clinical Trial. Am J Sports Med. 2009;37(1):42–55.

    Article  PubMed  Google Scholar 

  23. Imhoff AB, Oettl GM. Arthroscopic and open techniques for transplantation of osteochondral autografts and allografts in various joints. Surg Technol Int. 2000;8:249–52.

    Google Scholar 

  24. Hangody L. The mosaicplasty technique for osteochondral lesions of the talus. Foot Ankle Clin. 2003;8(2):259–73.

    Article  PubMed  Google Scholar 

  25. Kawasaki K, Uchio Y, Adachi N, Iwasa J, Ochi M. Drilling from the intercondylar area for treatment of osteochondritis dissecans of the knee joint. Knee. 2003;10(3):257–63.

    Article  PubMed  Google Scholar 

  26. James SL, Connell DA, Saifuddin A, Skinner JA, Briggs TW. MR imaging of autologous chondrocyte implantation of the knee. Eur Radiol. 2006;16(5):1022–30.

    Article  PubMed  CAS  Google Scholar 

  27. Henderson IJ, Tuy B, Connell D, Oakes B, Hettwer WH. Prospective clinical study of autologous chondrocyte implantation and correlation with MRI at three and 12 months. J Bone Joint Surg Br. 2003;85(7):1060–6.

    Article  PubMed  CAS  Google Scholar 

  28. Roberts S, McCall IW, Darby AJ, Menage J, Evans H, Harrison PE, et al. Autologous chondrocyte implantation for cartilage repair: monitoring its success by magnetic resonance imaging and histology. Arthritis Res Ther. 2003;5(1):R60–73.

    Article  PubMed  Google Scholar 

  29. Horas U, Pelinkovic D, Herr G, Aigner T, Schnettler R. Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint A prospective, comparative trial. J Bone Joint Surg Am. 2003;85-A(2):185–92.

    PubMed  CAS  Google Scholar 

  30. Safran MR, Seiber K. The evidence for surgical repair of articular cartilage in the knee. J Am Acad Orthop Surg. 2010;18(5):259–66.

    PubMed  Google Scholar 

  31. Prakash D, Learmonth D. Natural progression of osteo-chondral defect in the femoral condyle. Knee. 2002;9(1):7–10.

    Article  PubMed  Google Scholar 

  32. Felson DT, Lohmander LS. Whither osteoarthritis biomarkers? Osteoarthritis Cartilage. 2009;17(4):419–22.

    Article  PubMed  CAS  Google Scholar 

  33. Kijowski R, Blankenbaker DG, Davis KW, Shinki K, Kaplan LD, De Smet AA. Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint. Radiology. 2009;250:839–48.

    Google Scholar 

  34. Link TM, Sell CA, Masi JN, Phan C, Newitt D, Lu Y, et al. 3.0 vs 1.5 T MRI in the detection of focal cartilage pathology – ROC analysis in an experimental model. Osteoarthritis Cartilage. 2006;14(1):63–70.

    Article  PubMed  CAS  Google Scholar 

  35. Wong S, Steinbach L, Zhao J, Stehling C, Ma CB, Link TM. Comparative study of imaging at 3.0 T versus 1.5 T of the knee. Skeletal Radiol. 2009;38(8):761–9.

    Article  PubMed  Google Scholar 

  36. Bae WC, Dwek JR, Znamirowski R, Statum SM, Hermida JC, D’Lima DD, et al. Ultrashort echo time MR imaging of osteochondral junction of the knee at 3 T: identification of anatomic structures contributing to signal intensity. Radiology. 2010;254(3):837–45.

    Article  PubMed  Google Scholar 

  37. Chen CA, Kijowski R, Shapiro LM, Tuite MJ, Davis KW, Klaers JL, et al. Cartilage morphology at 3.0T: assessment of three-dimensional magnetic resonance imaging techniques. J Magn Reson Imaging. 2010;32(1):173–83.

    Article  PubMed  Google Scholar 

  38. Gold GE, Chen CA, Koo S, Hargreaves BA, Bangerter NK. Recent advances in MRI of articular cartilage. AJR Am J Roentgenol. 2009;193(3):628–38.

    Article  PubMed  Google Scholar 

  39. Stahl R, Krug R, Kelley DA, Zuo J, Ma CB, Majumdar S, et al. Assessment of cartilage-dedicated sequences at ultra-high-field MRI: comparison of imaging performance and diagnostic confidence between 3.0 and 7.0 T with respect to osteoarthritis-induced changes at the knee joint. Skeletal Radiol. 2009;38(8):771–83.

    Article  PubMed  Google Scholar 

  40. Wang L, Wu Y, Chang G, Oesingmann N, Schweitzer ME, Jerschow A, et al. Rapid isotropic 3D-sodium MRI of the knee joint in vivo at 7T. J Magn Reson Imaging. 2009;30(3):606–14.

    Article  PubMed  Google Scholar 

  41. Kijowski R, Davis KW, Woods MA, Lindstrom MJ, De Smet AA, Gold GE, et al. Knee joint: comprehensive assessment with 3D isotropic resolution fast spin-echo MR imaging – diagnostic performance compared with that of conventional MR imaging at 3.0 T. Radiology. 2009;252(2):486–95.

    Article  PubMed  Google Scholar 

  42. Ristow O, Steinbach L, Sabo G, Krug R, Huber M, Rauscher I, et al. Isotropic 3D fast spin-echo imaging versus standard 2D imaging at 3.0 T of the knee-image quality and diagnostic performance. Eur Radiol. 2009;19:1263–72.

    Article  PubMed  Google Scholar 

  43. Gold GE, Reeder SB, Yu H, Kornaat P, Shimakawa AS, Johnson JW, et al. Articular cartilage of the knee: rapid three-dimensional MR imaging at 3.0 T with IDEAL balanced steady-state free precession–initial experience. Radiology. 2006;240(2):546–51.

    Article  PubMed  Google Scholar 

  44. Duc SR, Pfirrmann CW, Koch PP, Zanetti M, Hodler J. Internal knee derangement assessed with 3-minute three-dimensional isovoxel true FISP MR sequence: preliminary study. Radiology. 2008;246(2):526–35.

    Article  PubMed  Google Scholar 

  45. Koff MF, Potter HG. Noncontrast MR techniques and imaging of cartilage. Radiol Clin North Am. 2009;47(3):495–504.

    Article  PubMed  Google Scholar 

  46. Potter HG, Black BR, le Chong R. New techniques in articular cartilage imaging. Clin Sports Med. 2009;28(1):77–94.

    Article  PubMed  Google Scholar 

  47. de Visser SK, Bowden JC, Wentrup-Byrne E, Rintoul L, Bostrom T, Pope JM, et al. Anisotropy of collagen fibre alignment in bovine cartilage: comparison of polarised light microscopy and spatially resolved diffusion-tensor measurements. Osteoarthritis Cartilage. 2008;16(6):689–97.

    Article  PubMed  Google Scholar 

  48. de Visser SK, Crawford RW, Pope JM. Structural adaptations in compressed articular cartilage measured by diffusion tensor imaging. Osteoarthritis Cartilage. 2008;16(1):83–9.

    Article  PubMed  Google Scholar 

  49. Filidoro L, Dietrich O, Weber J, Rauch E, Oerther T, Wick M, et al. High-resolution diffusion tensor imaging of human patellar cartilage: feasibility and preliminary findings. Magn Reson Med. 2005;53(5):993–8.

    Article  PubMed  CAS  Google Scholar 

  50. Meder R, de Visser SK, Bowden JC, Bostrom T, Pope JM. Diffusion tensor imaging of articular cartilage as a measure of tissue microstructure. Osteoarthritis Cartilage. 2006;14(9):875–81.

    Article  PubMed  CAS  Google Scholar 

  51. Ghosh S, Ries M, Lane N, Ghajar C, Majumdar S. Segmentation of high resolution articular cartilage MR images. Trans Orthopedic Res Soc (ORS). 2000:246.

    Google Scholar 

  52. Solloway S, Hutchinson CE, Waterton JC, Taylor CJ. The use of active shape models for making thickness measurements of articular cartilage from MR images. Magn Reson Med. 1997;37(6):943–52.

    Article  PubMed  CAS  Google Scholar 

  53. Stammberger T, Eckstein F, Michaelis M, Englmeier KH, Reiser M. Interobserver reproducibility of quantitative cartilage measurements: comparison of B-spline snakes and manual segmentation. Magn Reson Imaging. 1999;17(7):1033–42.

    Article  PubMed  CAS  Google Scholar 

  54. Borthakur A, Mellon E, Niyogi S, Witschey W, Kneeland JB, Reddy R. Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed. 2006;19(7):781–821.

    Article  PubMed  CAS  Google Scholar 

  55. Ling W, Regatte RR, Navon G, Jerschow A. Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci USA. 2008;105(7):2266–70.

    Article  PubMed  CAS  Google Scholar 

  56. Trattnig S, Mlynarik V, Breitenseher M, Huber M, Zembsch A, Rand T, et al. MRI visualization of proteoglycan depletion in articular cartilage via intravenous administration of Gd-DTPA. Magn Reson Imaging. 1999;17(4):577–83.

    Article  PubMed  CAS  Google Scholar 

  57. Bashir A, Gray ML, Hartke J, Burstein D. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med. 1999;41(5):857–65.

    Article  PubMed  CAS  Google Scholar 

  58. Burstein D, Gray M. New MRI techniques for imaging cartilage. J Bone Joint Surg Am. 2003;85-A Suppl 2:70–7.

    PubMed  Google Scholar 

  59. Gillis A, Bashir A, McKeon B, Scheller A, Gray ML, Burstein D. Magnetic resonance imaging of relative glycosaminoglycan distribution in patients with autologous chondrocyte transplants. Invest Radiol. 2001;36(12):743–8.

    Article  PubMed  CAS  Google Scholar 

  60. Williams A, Gillis A, McKenzie C, Po B, Sharma L, Micheli L, et al. Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): potential clinical applications. AJR Am J Roentgenol. 2004;182(1):167–72.

    PubMed  Google Scholar 

  61. Williams A, Sharma L, McKenzie CA, Prasad PV, Burstein D. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage in knee osteoarthritis: findings at different radiographic stages of disease and relationship to malalignment. Arthritis Rheum. 2005;52(11):3528–35.

    Article  PubMed  CAS  Google Scholar 

  62. Liess C, Lusse S, Karger N, Heller M, Gluer CC. Detection of changes in cartilage water content using MRI T2-mapping in vivo. Osteoarthritis Cartilage. 2002;10(12):907–13.

    Article  PubMed  CAS  Google Scholar 

  63. Dardzinski BJ, Mosher TJ, Li S, Van Slyke MA, Smith MB. Spatial variation of T2 in human articular cartilage. Radiology. 1997;205(2):546–50.

    PubMed  CAS  Google Scholar 

  64. Regatte RR, Akella SV, Wheaton AJ, Lech G, Borthakur A, Kneeland JB, et al. 3D-T1rho-relaxation mapping of articular cartilage: in vivo assessment of early degenerative changes in symptomatic osteoarthritic subjects. Acad Radiol. 2004;11(7):741–9.

    PubMed  Google Scholar 

  65. Regatte RR, Akella SV, Borthakur A, Kneeland JB, Reddy R. In vivo proton MR three-dimensional T1rho mapping of human articular cartilage: initial experience. Radiology. 2003;229(1):269–74.

    Article  PubMed  Google Scholar 

  66. Bolbos RI, Link TM, Ma CB, Majumdar S, Li X. T1rho relaxation time of the meniscus and its relationship with T1rho of adjacent cartilage in knees with acute ACL injuries at 3 T. Osteoarthritis Cartilage. 2009;17(1):12–8.

    Article  PubMed  CAS  Google Scholar 

  67. Li X, Ma CB, Link TM, Castillo DD, Blumenkrantz G, Lozano J, et al. In vivoT(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3T MRI. Osteoarthritis Cartilage. 2007;15:789–97.

    Article  PubMed  CAS  Google Scholar 

  68. Stahl R, Luke A, Li X, Carballido-Gamio J, Ma CB, Majumdar S, et al. T1rho, T(2) and focal knee cartilage abnormalities in physically active and sedentary healthy subjects versus early OA patients-a 3.0-Tesla MRI study. Eur Radiol. 2009;19:132–43.

    Article  PubMed  Google Scholar 

  69. Potter HG, Schachar J. High resolution noncontrast MRI of the hip. J Magn Reson Imaging. 2010;31(2):268–78.

    Article  Google Scholar 

  70. Carballido-Gamio J, Link TM, Li X, Han ET, Krug R, Ries MD, et al. Feasibility and reproducibility of relaxometry, morphometric, and geometrical measurements of the hip joint with magnetic resonance imaging at 3T. J Magn Reson Imaging. 2008;28(1):227–35.

    Article  PubMed  Google Scholar 

  71. Domayer S, Mamisch T, Kress I, Chan J, Kim Y. Radial dGEMRIC in developmental dysplasia of the hip and in femoroacetabular impingement: preliminary results. Osteoarthritis Cartilage. 2010;18(11):1421–8.

    Article  PubMed  CAS  Google Scholar 

  72. Li W, Abram F, Beaudoin G, Berthiaume MJ, Pelletier JP, Martel-Pelletier J. Human hip joint cartilage: MRI quantitative thickness and volume measurements discriminating acetabulum and femoral head. IEEE Trans Biomed Eng. 2008;55(12):2731–40.

    Article  PubMed  Google Scholar 

  73. Domayer SE, Trattnig S, Stelzeneder D, Hirschfeld C, Quirbach S, Dorotka R, et al. Delayed gadolinium-enhanced MRI of cartilage in the ankle at 3 T: feasibility and preliminary results after matrix-associated autologous chondrocyte implantation. J Magn Reson Imaging. 2010;31(3):732–9.

    Article  PubMed  Google Scholar 

  74. Draper CE, Besier TF, Santos JM, Jennings F, Fredericson M, Gold GE, et al. Using real-time MRI to quantify altered joint kinematics in subjects with patellofemoral pain and to evaluate the effects of a patellar brace or sleeve on joint motion. J Orthop Res. 2009;27(5):571–7.

    Article  PubMed  Google Scholar 

  75. Nishii T, Kuroda K, Matsuoka Y, Sahara T, Yoshikawa H. Change in knee cartilage T2 in response to mechanical loading. J Magn Reson Imaging. 2008;28(1):175–80.

    Article  PubMed  Google Scholar 

  76. Mayerhoefer ME, Welsch GH, Mamisch TC, Kainberger F, Weber M, Nemec S, et al. The in vivo effects of unloading and compression on T1-Gd (dGEMRIC) relaxation times in healthy articular knee cartilage at 3.0 Tesla. Eur Radiol. 2010;20(2):443–9.

    Article  PubMed  Google Scholar 

  77. Souza R, Bolbos R, Wyman B, Hellio M, Link T, Li X, et al. Changes in T1rho and T2 relaxation times of tibiofemoral articular cartilage with acute loading. Proceedings from the International Society for Magnetic Resonance in Medicine Annual Meeting 2009. Honolulu, HI; 2009.

    Google Scholar 

  78. Souza R, Stehling C, Wyman B, Le Graverand M, Li X, Link T, et al. The effects of acute loading on T1rho and T2 relaxation times of tibiofemoral articular cartilage. Osteoarthritis Cartilage. 2010; 18(12):1557–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmila Majumdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Link, T.M., Majumdar, S. (2011). Future Perspective and Significance of Cartilage Imaging and Quantification. In: Link, T. (eds) Cartilage Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8438-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8438-8_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8437-1

  • Online ISBN: 978-1-4419-8438-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics