Skip to main content

Anatomy and Histology of Cartilage

  • Chapter
  • First Online:
Cartilage Imaging

Abstract

Cartilage is a connective tissue structure that is composed of a collagen and proteoglycan-rich matrix and a single cell type: the chondrocyte. Cartilage is unique among connective tissues in that it lacks blood vessels and nerves and receives its nutrition solely by diffusion [1]. In fetal life, cartilage forms the template for the majority of the skeleton but persists in selected locations into adulthood including articular surfaces, ribs, ears, and the tracheobronchial tree. Structurally, cartilage provides a firm material which, depending on subtype, is adapted to resist and damp compressive and tensile forces. Functionally, it plays important roles in skeletal development, growth and repair, joint articulation, lubrication, and patency of the respiratory tract. Although the mechanical properties of cartilage are functions of the extracellular matrix, it is the chondrocyte that directs the synthesis and composition of the matrix. Though few in number, chondrocytes also mediate critical pathways of regeneration and growth by highly regulated signal transduction pathways that are now becoming better understood [2, 3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maroudas A, Bullough P, Swanson SA, Freeman MA. The permeability of articular cartilage. J Bone Joint Surg Br. 1968;50(1):166–77.

    PubMed  CAS  Google Scholar 

  2. Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell. 2002;2(4):389–406.

    Article  PubMed  CAS  Google Scholar 

  3. Tuan RS. Cellular signaling in developmental chondrogenesis: N-cadherin, Wnts, and BMP-2. J Bone Joint Surg Am. 2003;85-A Suppl 2:137–41.

    PubMed  Google Scholar 

  4. Van der Korst JK, Skoloff L, Miller EJ. Senescent pigmentation of cartilage and degenerative joint disease. Arch Pathol. 1968;86(1):40–7.

    PubMed  Google Scholar 

  5. Martel-Pelletier J, Boileau C, Pelletier JP, Roughley PJ. Cartilage in normal and osteoarthritis conditions. Best Pract Res Clin Rheumatol. 2008;22(2):351–84.

    Article  PubMed  CAS  Google Scholar 

  6. Venn MF. Chemical composition of human femoral and head cartilage: influence of topographical position and fibrillation. Ann Rheum Dis. 1979;38(1):57–62.

    Article  PubMed  CAS  Google Scholar 

  7. Eyre DR. The collagens of articular cartilage. Semin Arthritis Rheum. 1991;21(3 Suppl 2):2–11.

    Article  PubMed  CAS  Google Scholar 

  8. Eyre DR, Weis MA, Wu JJ. Articular cartilage collagen: an irreplaceable framework? Eur Cell Mater. 2006;12:57–63.

    PubMed  CAS  Google Scholar 

  9. Jones GC, Riley GP. ADAMTS proteinases: a multi-domain, multi-functional family with roles in extracellular matrix turnover and arthritis. Arthritis Res Ther. 2005;7(4):160–9.

    Article  PubMed  Google Scholar 

  10. Prockop DJ, Sieron AL, Li SW. Procollagen N-proteinase and procollagen C-proteinase. Two unusual metalloproteinases that are essential for procollagen processing probably have important roles in development and cell signaling. Matrix Biol. 1998;16(7):399–408.

    Article  PubMed  CAS  Google Scholar 

  11. Reboul P, Pelletier JP, Tardif G, Cloutier JM, Martel-Pelletier J. The new collagenase, collagenase-3, is expressed and synthesized by human chondrocytes but not by synoviocytes. A role in osteoarthritis. J Clin Invest. 1996;97(9):2011–9.

    Article  PubMed  CAS  Google Scholar 

  12. Watanabe H, Yamada Y, Kimata K. Roles of aggrecan, a large chondroitin sulfate proteoglycan, in cartilage structure and function. J Biochem. 1998;124(4):687–93.

    PubMed  CAS  Google Scholar 

  13. Bullough PG. Joints. In: Mills SE, editor. Histology for pathologists. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 97–122.

    Google Scholar 

  14. Roughley PJ. Articular cartilage and changes in arthritis: noncollagenous proteins and proteoglycans in the extracellular matrix of cartilage. Arthritis Res. 2001;3(6):342–7.

    Article  PubMed  CAS  Google Scholar 

  15. Rosenberg L. Chemical basis for the histological use of safranin O in the study of articular cartilage. J Bone Joint Surg Am. 1971;53(1):69–82.

    PubMed  CAS  Google Scholar 

  16. Stockwell R, Meachim G. The chondrocytes. In: Freeman MA, editor. Adult articular cartilage. London: Pitman Medical; 1973.

    Google Scholar 

  17. Bianco P, Riminucci M, Gronthos S, Gehron-Robey P. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001;19(3):180–92.

    Article  PubMed  CAS  Google Scholar 

  18. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res. 1998;238(1):265–72.

    Article  PubMed  CAS  Google Scholar 

  19. Barry F, Boynton RE, Liu B, Murphy JM. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res. 2001;268(2):189–200.

    Article  PubMed  CAS  Google Scholar 

  20. Ichinose S, Yamagata K, Sekiya I, Muneta T, Tagami M. Detailed examination of cartilage formation and endochondral ossification using human mesenchymal stem cells. Clin Exp Pharmacol Physiol. 2005;32(7):561–70.

    Article  PubMed  CAS  Google Scholar 

  21. Henning TD, Sutton EJ, Kim A, Golovko D D, Horvai A, Ackerman L, et al. The influence of ferucarbotran on the chondrogenesis of human mesenchymal stem cells. Contrast Media Mol Imaging. 2009;4(4):165–73.

    Article  PubMed  CAS  Google Scholar 

  22. Akiyama H, Kim JE, Nakashima K, Balmes G, Iwai N, Deng JM, et al. Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors. Proc Natl Acad Sci USA. 2005;102(41):14665–70.

    Article  PubMed  CAS  Google Scholar 

  23. Park HR, Park YK. Differential expression of runx2 and Indian hedgehog in cartilaginous tumors. Pathol Oncol Res. 2007;13(1):32–7.

    Article  PubMed  CAS  Google Scholar 

  24. Rosenberg AE, Roth SI. Bone. In: Mills SE, editor. Histology for pathologists. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 75–95.

    Google Scholar 

  25. Mankin HJ, Dorfman H, Lippiello L, Zarins A. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am. 1971;53(3):523–37.

    PubMed  CAS  Google Scholar 

  26. Cs-Szabo G, Roughley PJ, Plaas AH, Glant TT. Large and small proteoglycans of osteoarthritic and rheumatoid articular cartilage. Arthritis Rheum. 1995;38(5):660–8.

    Article  PubMed  CAS  Google Scholar 

  27. Struglics A, Larsson S, Pratta MA, Kumar S, Lark MW, Lohmander LS. Human osteoarthritis synovial fluid and joint cartilage contain both aggrecanase- and matrix metalloproteinase-generated aggrecan fragments. Osteoarthritis Cartilage. 2006;14(2):101–13.

    Article  PubMed  CAS  Google Scholar 

  28. Tardif G, Hum D, Pelletier JP, Boileau C, Ranger P, Martel-Pelletier J. Differential gene expression and regulation of the bone morphogenetic protein antagonists follistatin and gremlin in normal and osteoarthritic human chondrocytes and synovial fibroblasts. Arthritis Rheum. 2004;50(8):2521–30.

    Article  PubMed  CAS  Google Scholar 

  29. Unni KK. Cartilaginous lesions of bone. J Orthop Sci. 2001;6(5):457–72.

    Article  PubMed  CAS  Google Scholar 

  30. Horvai A. Cartilage-forming tumors. In: Folpe AL, Inwards C, editors. Bone and soft tissue pathology. Philadelphia: Saunders; 2010. p. 333–54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Horvai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Horvai, A. (2011). Anatomy and Histology of Cartilage. In: Link, T. (eds) Cartilage Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8438-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8438-8_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8437-1

  • Online ISBN: 978-1-4419-8438-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics